
NASA/TM-1999-208792

SAGE

The Self-Adaptive Grid codE
Version 3

Carol B. Davies

Raytheon ITSS, Moffett Field, California

Ethiraj Venkatapathy

Thermoscience Institute, Eloret, Sunnyvale, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035- 1000

August 1999

Ill I Ill

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 2216 I

(703) 487-4650

TABLE OF CONTENTS

SUMMARY

1. METHOD

1.1 Introduction

1.2 Formulation of adaptive-grid scheme
1.3 Auxiliary equations

1.3.1 Tension parameter, co
1.3.1.1 AandB

1.3.1.2 Evaluation of cot, torsional correction to co
1.3.2 Torsion terms

1.3.2.1 Evaluation of s' and s*

1.3.2.2 Torsion vectors, 7 and t'*
1.3.2.3 Vectors _, g', and

!.4 Treatment of boundaries

1.4.1 Initial marching boundary fine
1.4.2 Final marching boundary line
1.4.3 Side-edge boundaries
1.4.40rthogonality at boundaries

1.5 Preservation of wall boundary shape
1.6 Finite-volume grids
1.7 Multiple grids
1.8 Outer boundary movement

1.8.1 Moving outer boundary
1.8.2 Point redistribution after boundary move

!.9 Vinokur clustering
I. 10 Optional versions of SAGE

1.10.1 Blanked grids
1.1 0.2 Cyclical and periodic boundaries

I.I I Appendices
1.11.1 I: Derivation of A and B
I. I 1.2 II: Vector intersection
I. I1.3 III: Vector normal definition

2. SAGE USER GUIDE
2.1 Overview
2.2 Code execution

2.3 Input control parameters
2.3.1 List of user input parameters
2.3.2 Detailed explanation of each parameter

2.4 Special Grid Types
2.4.1 2-D adaption
2.4.2 Finite-volume

2.4.3 Multiple grids, including EXPORT and IMPORT
2.4.4 Blanked grids

2.5 Output messages
2.6 Description of each subroutine
2.7 Nomenclature

2.8 List of major variables

3. EXAMPLES

3.1 Two-dimensional examples

Case I. Flow in a supersonic inlet
Case 2. Hypersonic bhmt-body flow
Case 3. Blunt-body shock impingement problem

Paa
I

1
1
2
4
4

4

5
5

6

6
7
8
8
9
9
0
0
!
!
2
2
2
3
3
3
4

14
14

15
16

17
17
18
18
19
21
26
26
27
27
28
28
30

35
37

41

41

41
45
46

iii

Case4. Hypersonicinlet (zonaladaption)
Case5. Subsonicimpingingjet
Case6. Axisymmetricplumeflow

3.2 Three-dimensionalexamples
Case7. Tandemfuel injectorsin a supersoniccombustor
Case8. NASP3-Dnozzlesimulation
Case9. Aeroassistflight experiment(AFE)vehicle

3.3 Multiplegridexamples
Case[0. A simplegenericmultigrid
Case11. A NASPconfiguration

3.4 Outerboundarymovementandreclustering
Case12. SpaceShuttle

4. REFERENCES

5.BLANKVERSIONUSERGUIDE
5.1 Blankingalgorithm
5.2 Execution
5.3 Userinputparameter
5.4 Subroutineandvariablelist
5.5 Example case, Access-to-Space

46
47
48

50

50
52
55

56

56
57
58

58

61

62
62
63
63
63
64

iV

THE SELF-ADAPTIVE GRID CODE, SAGE

Version 3

Carol B. Davies* and Ethiraj Venkatapathy "I"
Ames Research Center

SUMMARY

The previous version of the SAGE code (Version 2) is described in NASA TM-110350 (Davies and
Venkatapathy, 1995). This new report on Version 3 includes all the information in the original publication
plus all upgrades and changes to the SAGE code since that time. The most significant upgrade is the feature
to move the outer grid boundary, either reducing or expanding the grid, based on flow features or other
information. This ability was originally featured in a separate code called OUTBOUND developed by the
same authors and extensively used in-house. In addition, a new reclustering algorithm has been added that
permits very tight clustering in the boundary layer, a significant asset for grids used in viscous flow
calculations.

The first section of this document describes the formulation of the adaption method. The second
section is presented in the form of a user guide that explains the input and execution of the code, while the
third section provides many examples. A special case is the ability to handle the PLOT3D BLANK option
that is used in complex multigrid structures to blank out regions of overlapping grids. Due to its complexity
and size, this option is not available in SAGEv3 but is described in this document in Section 5 and the

special SAGE version can be obtained from the authors.
Successful application of the SAGE code in both two and three dimensions for the solution of

various flow problems has proven the code to be robust, portable, and simple to use. Although the basic
formulation follows the method of Nakahashi and Deiwert (1985), many modifications have been made to
facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method
and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can
accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid and

zonal-matching multiple grid flow problems.

1. METHOD

1.1 Introduction

Solution-adaptive grid methods have become useful tools for efficient and accurate flow predictions.
In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, and
shear layers require careful distribution of grid points to minimize grid error and thus produce accurate flow-
field predictions. Frequently, the generation of the first grid topology does not adequately capture these
flow structures. It has been shown that an effective way of obtaining accurate solutions is by intelligently

redistributing (i.e., adapting) the original grid points based on the initial flow-field solution and then
computing a new solution using the adapted grid. The cost efficiency of grid adaptions in terms of CPU
time depends on the basic formulation of the adaptive-grid solver. A short historical review and a list of
references on.the adaptive grid procedure used in the SAGE code are given in Davies and Venkatapathy
(1991).

The self-adaptive grid procedure outlined by Nakahashi and Deiwert (1985) has evolved into a
flexible tool for adapting and restructuring both two-dimensional (2-D) and three-dimensional (3-D) grids.
The adaptive-grid method is based on grid-point redistribution through local error minimization. The
procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient
at every grid point and finding the equilibrium position of the resulting system of grid points. The
multidimensional problem of grid adaption is split into a series of one-dimensional (I-D) problems along
the computational coordinate lines. The reduced 1-D problem then requires a tridiagonal solver to find the
location of grid points along a given coordinate line. Multidirectional adaption is achieved by the sequential

* Raytheon ITSS, Moffett Field, CA

"l"Thermoscience Institute, Eloret, Sunnyvale, CA

application of the method in each coordinate direction. This approach produces an extremely CPU-
efficient algorithm.

The tension forces direct the redistribution of points to the strong gradient regions. The torsion
forces relate information between the families of lines adjacent to one another, to maintain smoothness

and a measure of orthogonality of grid lines. These smoothness and orthogonality constraints are direction-
dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that
have already been adapted. This implies that the solutions are non-unique and depend on the order and

direction of adaption.
The Self-Adaptive Grid codE (SAGE) code has been built with many flexible elements that make it

user-friendly. The second section of this report is a user guide, which is independent of the first section and
can be used as a separate document. However, the nomenclature and details of the grid adaption procedure
within the code consistently follow the analysis, allowing the user to understand the code and implement
any individual changes, if desired. The user guide describes the input parameters and their effects as well as
the adaption procedure, execution commands, and subroutines, and provides many examples.

1.2 Formulation of Adaptive-Grid Scheme

As stated in the introduction, adaption takes place as a series of one-dimensional adaptions. Figure
1 illustrates this concept: three constant k planes of an initial grid are shown in Fig. l(a) and a flow-field
solution has been obtained using this unadapted grid. The points in this grid are then adapted to the flow
solution, starting on the first line (j=l) on the lower plane k-1. In Fig. l(b), the first plane has already been
adapted and the second plane is the current adaption plane. The current adaption line 09 is shown, with
previous lines already adapted and subsequent lines awaiting adaption. The third plane is still in its original
form. Adaption is performed in this line-by-line, plane-by-plane manner until all requested planes are
complete. It is then possible to perform an adaption in a second direction, adapting on top of the already

adapted
plane

currentadaption

plane

__ _ Firstadaption
• '_ plane
I

Figure 1. 3-D adaption. (a) hTitial grid," (b) directional adaption.

adapted grid. The number and
order of adaptions are arbitrary
and depend on the type of flow
problem and the purpose of the
adaption.

Figure 2 shows a
segment of the current
adaption line in more detail.
The lower plane has already
been adapted and the upper
plane is currently being
adapted. Four forces control
the redistribution of points
along each line: the two
tension springs that act on
each side of a node, and the

tnvo torsion springs that
control the smoothness of the

grid. The tension forces co

cluster the redistributed points into the high-gradient regions. The torsion forces (z and _) restrain the
tension forces to maintain continuity between sequentially adapted lines. As shown in Fig. 2, the z force
acts from the previously adapted line within the current plane and the _ force acts from the previously

adapted line in the preceding plane.
A 3-D grid is described in terms of its computational coordinate directions (i,j,k) and its physical

coordinates (x,y,z). An adaption can take place in any or all of the computational coordinate directions and
the SAGE code permits any combination. However, for clarity, this analysis assumes that all adaptions are

performed in the i direction and that stepping (within a plane surface) occurs in the j direction. Thus k is
the marching direction for plane stepping. The current adaption line is thusj in the plane k where lines j-l,

j-2, etc., have already been adapted. In addition, this report uses the term 'plane' to mean any 3-D
coordinate surface.

Thefirst stepin the formulationof the adaptionalgorithmis to considerthe adaptionof a single
line,with no torsionalconstraints(i.e., no smoothnesscontrol). Figure3 shows a 2-D surface, where the

arc length at A (i.e., s,j.,, with s).j_k =.0) along the current adaption line, j, is defined as

./
_ .)2)2+(z i-zi-)2 (1)si=si-l + V(xi xi-I +(Yi-Yi-l I'

g

7-

E

marching direction within plane

(0

L J j+l
"c_ i iii._ ,," I /

cur,'ent
,_=_ I l "41- plane, k

Tii"" "_-Li#-i-i-" "

re=tension spring between each node

T=torsion spring within current plane
q_=torsion spnng between planes

Figure 2. Line-by-line adaption showing tension
and torsion forces.

A tension force, f(m,), is defined to act
between each i and i+l node such that

re;As, =K (2)

where m, the tension constant, is a weighting

function based on the flow gradient; As',=s,+l-s,;
and K is the resultant force. To redistribute the

points along a line with the minimum solution error,
the adaptive procedure defines the weighting
function as proportional to the derivative of the
flow variable (Nakahashi and Deiwert 1985). In this
formulation, m is defined as a function of the

normalized flow gradient, jT", such that

03,= 1+ (3)
where A and B are constants directly related to the
grid spacing and are chosen to maintain the grid

intervals to within the limits (zks'^¢;.v and ASA_A.v)set

by the user on input. A and B are defined in
Appendix I of this section.

Equation (2) is written for each node on the
line, giving a I-D formulation that can be solved

directly forAs,. Taking the sum of both sides of

Eq. (2) produces
111 #li l

2As' = s'<'-"= K_l m-7 i-I i i+l

giving _]

f

/;=i co#

Substituting back in Eq. (2), we obtain

/°' ---

.... 2- (5)
/ ;=) co;

In the SAGE code, this I-D solution D : _ i-

technique is used along the initial adaption
line of the initial adaption plane, where no
directional information is available.

Continuing this approach for successive line-
by-line adaptions will create a mesh that is ----...d
insufficiently smooth for input into lend
computational flow-field codes. Therefore,

to ensure a more reasonable grid, the Figure 3. Currenl adaption line j on a 2-D surfiwe.
redistribution of points (driven by the
tension springs) is constrained by torsion
terms defined on two adjacent adapted lines: one on the current plane and one on the preceding plane.
Within the current plane, the torsion parameter z represents the magnitude of the torsion force that

maintains smoothness and orthogonality between the node (i.j,k) and the nodes (i,j-l,k) and (i,j-2,k). This

is the only torsion parameter available on the initial surface. For subsequent surfaces, the torsion parameter

constrainsthemovementbetweenthe samenode(id, k) and the nodes (i.j,k-1) and (i,j,k-2) on adjacent

computational planes. The torsion terms are evaluated as z,(s_-s,) and _t,(s_-s,) (see Fig. 3: s' is at

A'), where the torsion parameters "rand _ define the magnitude of the torsion forces and s'and s* define

their inclination (i.e., orthogonality and smoothness).
To introduce the torsion forces to the system of equations, we first rewrite Eq. (2) to represent the

force balance,
o,(si+l-s,)-o ' a(s,-s,_l)=O (6)

and then add the torsion terms to obtain

co,(s,+ I -s,)-co,_j(s,-s,_j)+ x,(sj-s,)+ _,(s_ -s,)=O (7)

which is rearranged to produce the coefficients of the tridiagonal matrix used to solve for si,

co,_,s,__- (co, + co,_, + _, + _,)s, + co,s,+, = -_,s'- _¢,s_ (8)

This equation is written for each interval along the adaption line, producing a system of (n, - i) equations.

Since s_ and s, are known, there are n,- 2 rows in the matrix. This equation is solved iteratively (updating

co, at new s,) until _" .c,,) ,-J_,=_s, -s_ <10 -3×s This system of equations is central to the adaption

technique used in the SAGE code and most of the description that follows pertains to deriving the
coefficients of this equation.

1.3 Auxiliary Equations

1.3.1 Tension parameter, coi. As described in the formulation, co, acts as a tension force in the

interval (s,+ I -s,) and can be imagined to be a spring (aligned with the grid line) connecting the two grid

points, as shown in Fig. 3. This tension parameter !s defined in Eq. (3) as

co, = i+Af _

where 97,,is a function of the gradient of the flow variable, q:

f - fm._ and f - oq' - q'+' - q_ (9)
f,,,,x -f,,,, Os As,

The standard format of the user's input flow-field file contains the conservative flow variables Q, as

defined in the plotting software package PLOT3D (Walatka etal., 1990). This format (for a 3-D dataset)
assumes the flow variables are p, pu, pv. pw, and e. Since the adaption is based on a scalar function q, this

fimcti0n can be evaluated as a user-specified combination of flow variables Q. Pressure, Mach number and

temperature ratio are also provided as adaption variables and are internally computed, assuming the perfect
gas relationship. However, Q need not be restricted to conservative flow variables, but can be any
combination of user-specified flow variables that represent the flow field.

To remove the unwanted oscillations from the discrete evaluation, f is smoothed by adding a

second derivative term, i.e., f = .75f +. 125(f+ I -f-l). By default, two smoothing passes are made, but

this can be overridden by changing the filter input control parameter, NFILT. The tension parameter, co,,

is smoothed in the same way.

1.3.1.1 A and B. As seen in Eq. (3), co is also a function of A and B. These variables are the

important elements of the self-adaptive nature of the scheme because they control the size limits of the

grid spacing. A and B are computed from the user-supplied maximum and minimum allowable grid spacings,

AL_tAx and A_MjN. These are relative values of mesh size and allow the user to specify the proportion of

largest to smallest zk_ in the final adapted grid.

The value of A is constant throughout the grid adaption and is given by

A - z_s_'/4x I (I0)
L_ MIN

4

Thevalueof B is computed (by an iterative process) for each j line to provide

input Lks'_tm = computed Asm,,,

That is, the computed minimum grid spacing is equal to the user-requested value. Appendix I gives a detailed
description of the derivation of these two parameters.

1.3.1.2 Torsional effect on the evaluation of co. As just noted, the function of

variables A and B is to control the size limits of the adapted-grid mesh spacing and, as described in

Appendix I, B is computed from the I-D Eq. (2). Thus tile addition of the torsion terms is somewhat
inconsistent with the value of B, and the resulting grid spacings may give values slightly outside the
requested limits. To provide for additional control, a weighting factor is applied to o3 such that

co,=(l+A_,n)%, where co,, is the weighted tightness factor. When equation (8)is solved, each /k_, is

tested and if it does not lie within the requested spacing limit, co,, will be computed; otherwise co,, = 1.0. if

As', < l_s_, N, we need to relax (decrease) the value of co, to produce a larger lks., in the next iteration. If zks',

is too large, co, should be increased. We therefore use the modifier

I As'i 1 As',
COl, co,,

depending on whether As, < As_, N or lks', > ASpcA.v. Equation (8) is therefore solved using the modified

values of co. It should be noted that co,, = 1.0 in the regions of side-spacing control (see section 1.4.3)

where _', is permitted to be outside the specified limits.

1.3.2 Torsion terms. As shown in Eq. (7), the torsion terms, "c,(s_-s,) and _,(s_-s,), are added

to the 1-D equation to preserve the required smoothness and orthogonality of the grid. They are
constructed as being analogous to the behavior of torsion springs. Consider first the torsion term within the
plane, f(_). A torsion force, T, relates the node at (i,j-l,k) to the node (i,j,k), is proportional to the

turning angle, 0, shown in Fig. 3, and is defined as

T, = _:0i.j_ I .k (! 1)

where _: is a torsion-related constant. The next step is to relate this torsional force to the previously

defined parameters on the adaption line. Since 0 is generally small, we can approximate O, by

(s'-s,)/DA'[(see Fig. 3), where (s'-s,) is a function of the inclination angle computed from the

proportioned orthogonality and straightness vectors, as described in section 1.3.2.3. In addition, we assume
that I¢ is proportional to the maximum co, (= I + A) and the local aspect ratio of the grid cell. Hence we can
write

Xcom,x(s ,+l,j-I - s,__ .j__)

K = 2 DA'J (12)
I

where ?_ is the proportionality coefficient and is an input quantity. The variable "cused in Eq. (8) can thus
be defined as

_co(s ,+l,j-i - s i-i .j4)

"c, 2DA "2 (13)

The evaluation of _ is similar, with the node (i,j-l,k) replaced by (i,j,k-1) and a proportionality

coefficient _.*defined that is analogous to _ such that:

_*co,,,x (s ,+l,j,k-1 - s ,-t .j,k-t)
_, - (14)

2BA '2

5

where BA' is the distance from (i,j,k-1) to the location of s,[j.k. The evaluations of IDA" and BA' are

given in Appendix 11.

ik plane atj

Figure 5 Calculation of A', intersection of
torsion and stream_a, ise vectors.

Figure 4. Torsion vectors, t and t*.

1.3.2.1 Evaluation of s' and s*. These two variables, seen on the right-hand side of

Eq. (8), are calculated from the torsion vectors and provide the direction of the smoothness and
orthogonality constraints. The location of s' lies at the intersection of the projection of the within-plane

torsion vector 7, with the arc-length vector g', along the current adaption line. The location of s_ is
^,

similarly determined from the between-plane torsion vector ti . Figure 4 shows the two unit torsion

vectors: t, acting from point D and intersecting the line AC at A', and /", acting from point B and

intersecting the same line at A*, such that

s; = s, + AA" and s,* = s, + AA* (15)

In general, neither 7 nor 7* will directly intersect the line AC, and the projection of the torsion vectors
onto _ is required. An example of the projection vectors is shown in Fig. 5 where the projection of t onto
the k plane intersects _" at A'. A fidl description of the calculation of the intersection is given in Appendix
II.

1.3.2.2 Torsion vectors i" and t'*. Figure 6 shows in detail the within-plane torsion

vector t', and the associated base vectors (_] = f(h, b), and _). The vectors in these figures are displayed on

a 2-D surface, and it should be remembered that the shown /" is actually the projection of t" seen in Fig. 5.

The unit vector t', associated with the nodal point (i,j,k) [but acting from the point (i,j-l,k)] is defined as

t],j,k = _[C,_ + (1 - C,)fi_ l (16)

where

C_ is the input parameter that defines the percentage of straightness to orthogonality,

ei is an average straightness vector from (i.j-2,k) to (i.j-l,k), and

fi, represents the orthogonality vector between the j-1 line and the node (i,j,k) and is a function of

/_ and t_ vectors described below.

The between-plane torsion vector t' which acts fronl the node (i,j,k-1), is similarly defined as

ti.j,_ = _ [C_ej"+ (I - C;)11i 1
(17)

whereC,* is the input proportion parameter, and].t

normal_* and vectors.'_7are the equivalent straightness and _! _ _' __ jIt should be noted that Figs. 4 and 6 show

vect°rs intersecting the J line in the interval _i_l-I

(i,i+l); however, this is not necessarily the case.
In general, we assume that the projection of 7i

intersects the j line in the interval (l,l+l).
Appendix II describes a general method used to

compute the intersection of a vector with the 0_...__,\/0 j-2
vector _.

1.3.2.3 Evaluation of vectors 8, _, and r_.

The unit vector £; (direction AC in Fig. 7) is the
E

arc-length vector from s, to s,+_ along aj line. It
is defined as

where Figure 6. Torsion vector as a combination of
l 1 normal and straightness vectors.

Sx=_(X,+t.s.,--X,.s.k), S,, =_,[(Y,+.j.k--Y;4.k)

1

and s_, = s--](z,+l.s._ - z,.j. k)

The unit vector _, (direction ED in Fig. 7) is defined as the sum of three straightness vectors,

di-i, c), , and ,4,+,, where

such that

;t,,j= i +a,,s+dzi

g

7
'/]__ k plane

k-2 plane

1-l,k) / B(i'

_21,p _J_

/
Figure 7. Straightness vectors, _ and _*.

I 1

_--,, -- _-_i Id,, dy,

_ 1
and d. -]_ (z;../_ t.k - z,j-2.k)

I "t

I ^

Therefore, _; =_(4-, +d, +d_+,)- if the line

j-2 does not exist (such as at the second line

from a physical boundary), it is assumed that
_=h.

The straightness vector between planes,
___)

_,*, is shown as PB in Fig. 7. It is computed like

above, with points (i,j-l,k) and (i,j-2,k)

replaced with (i,j,k-l) and (i,j,k-2) respectively.
The vector fi is a combination of two

vectors:

,3= (18)
I,,,It

where t_i represents orthogonality to the ik plane through the j-1 line, and £i the orthogonality to the ik

plane through thej line, as shown in Fig. 8. The parameter t,, that proportions /_ and h is defaulted to .5,

changing only at the upper and lower marching boundaries, as discussed in section 1.414. The calculation of

t J _ ik planeatj-1
i (i,j-l,k-1) m

e(i,j-l,k-1) _ (i,j-l,k)

(i-l,j-l,k)

Figure 8. Normal vectors _ and b.

function of the vector h*, defined as

a normal vector to a point in a 3-D
surface needs defining: for example, in

Fig. 8, the vector fi acts at D,
perpendicular to the ik surface at j-1 (the

surface that contains G, F, M, and Q). In
this case, there are four possible planes to
choose from (MDF, MDQ, GDF, and

GDQ) and thus the definition of the z}
and b vectors is the average of the
normals to each of the four planes, when

the planes exist. Since two vectors define
the plane in which they lie, the normal

to that plane is obtained by^taking their
cross product. The vector b would also
act at D but is perpendicular to the ik
plane at j. Appendix III describes the
general calculation of the normal to a
given plane at a given point.

In addition to the within-plane
orthogonal constraints, orthogonality is
also controlled between planes by a

_ [t,_/;* +(I-t*,)t*_*] (19)

The normal t_* acts at point B, perpendicular to the/j" plane at k-l, and /;* acts at A, but perpendicular to

the plane at k.

1.4 Treatment of Boundaries

The ability to modify the adaption techniques in boundary regions substantially improves the
flexibility of the adaptive scheme. The adaption domain is defined by the user and may be equal to, or a
subset of, the physical grid. A boundary occurs at the limits of the adaption domain defined by the user.
Within a plane, there are two types of boundaries: marching boundaries (all points along tl_e initial and final
adaption lines) and edge boundaries (at i = is, and

i=ie,u,). There are also initial and final surface

boundaries to take into consideration. Figure 9 shows

a 2-D example of an adaption domain as a subset of
the physical grid, and illustrates the two types of
boundary lines when marching in thej direction. Note
that if marching had been in the i direction, the
boundary definitions would have been reversed.

By internally amending the previously defined
variables of C,, t,,, and _. in the boundary regions, it

is possible to maintain physical characteristics at
boundaries, allow for multiple passes, provide

continuity across grid boundaries, and simplify
multiple grid adaptions. Specialized boundary
conditions, such as wall shape preservation and

periodic boundaries, are discussed in separate sections.

1.4.1 Treatment of initial marching

boundary line. if the initial adaption line is within
the physical domain, a smooth transition will be

(1,121 (15,12)

- side edg(

_,-" boundar

II t II

(1,1)_ I I '' t5,1)

is t=3 iend= 12I
marchi "lgboundary

Figure 9. Adaptiou domain as subset of
physical domain.

8

requiredacrossthe startinginternalboundary.For example,this situationoccurswhenadaptingin zones;
eachzonehasdifferentflow featuresandthe usermaywishto marchup to a certainfineusingonesetof
parameters,then continuemarchingusinga newset.The common boundary between the two zones must
remain unchanged when starting the second adaption pass. This feature is controlled by the input parameter

mu. When mg> 0, a smooth transition from external grid fines (e.g., those in the already adapted zone) to

internal fines is created by maintaining the same grid points along the initial fine and then incrementally
introducing the input adaption parameters. For example, when stepping to the second adaption line, most

straightness is maintained by setting C t = I (see Eq. (16)). At each subsequent line, C r is gradually decreased

until it equals the user-supplied input value. The number of lines stepped before the full effect of the new

parameters is felt depends on rag; Ct will linearly decrease until mg lines have been adapted. An example of

this can be seen in Fig. 9, in which J._t= 4 and m_ = 5. The grid points along j = 4 will remain unchanged

while those along j =8 will be fully adapted to the input control parameters. The code controls the

adaption parameters for lines in between. Consequently, we define a variable n,, as

17Zg -- j

n,,, - (20)
m g - Js,

and replace the value of C, used in Eq. (16) by

C,_ = (7,(1-nm)+n,,

At the same time, the value of X is increased to X(! +5n,,) so that this amendment to C, is more effective.

After m u lines, n,,, = 0, thus returning Ct and _. to their original values. Note that the computation of

along the j_, +! line is a function of the j_-I line (if it exists), and this will also help in the merging

process.

A similar parameter, mu, is used when the first plane must remain unchanged (e.g., at a multigrid

boundary) and subsequent planes are gradually adapted.

1.4.2 Treatment of final marching boundary line. Another discontinuity will occur between
the final adaption line and any subsequent lines external to the adaption domain. Since the adaption process
is a marching scheme, it is not possible to use the same merging concept described earlier. On request
(through the MARCH input parameter), the grid points on the remaining external lines will be redistributed
with the same proportions as the points on the final adapted line. In addition, nonadapted planes can be
proportioned with respect to lines on previously adapted planes. This is not an adaption to the flow field,
but provides a more acceptable interface between the computational and physical domains.

1.4.3 Treatment of side-edge boundary. A smooth transition will also be needed at the side-
edge boundaries if the adaption domain is internal to the given grid, i.e., if i_r > l or i_,a <imax. Figure

10(a) shows an example in which the
fixed external grid spacing is denser than
the first redistributed points, giving a
discontinuous effect across the boundary.
If the user requests continuity of mesh
spacing across the side-edge boundaries
(by setting the input parameter NEDGE,

(nu) _:0), a modification is made to the

tension parameter, 03. Consider the start-

edge boundary at i= i;, along line j. We

wish to enforce some value on 03_ that

will give a value of As_ close to the value

of As,___. To do this, we find the average

coAs along the converged j-1 line and

side-edge boundary

\
IIIII

//////
is! ist

Figure lO. Control of side-edge boundaries.
(a) With no edge control; (b) with edge control.

replace 03_ by 03As/Asq_l. j. This value relnains fixed during the iteration, but is merged into the updated

values of 03 close to the boundary. In general, this implies that 0) 2, 033, and 034 wrilI be amended; however,

anadditionaloption is available (using input parameters MGI and MG2) to spread the effect further into
the adaption domain. Figure 10(b) shows the effect of this process, giving a more appropriate spacing in
the vicinity of the i,, boundary. The end-edge boundary is handled in a similar manner.

The side-edge spacing often needs to be improved even when the adaption domain coincides with
the physical domain. If an adaption pass generates inappropriate side-edge spacing, the code can be rerun

with n_ set to nonzero in an attempt to improve the spacing by using the above technique. In this case we

do not have an external &s, and As2.j is used instead of &s;,,_l.j. This will usually prevent the spring

constants from pulling the lines too far off the boundary.

The variable ng can be set to initiate computation for either or both side edges.

1.4.4 Treatment of orthogonality at boundaries. The code provides the choice of

constrncting grid lines that are as orthogonal as possible to a marching boundary', either to the final line in a

plane or to the entire final plane. To accomplish this, the normal vector _ (and/or h*) is emphasized over
the straightness vector by decreasing C t when the adaption line is close to a marching boundary line. For

even greater control, the coefficient t,, is modified to emphasize either t_ or /_, depending on whether the

initial-line or end-line boundary is being considered. To ensure that the modifications to these torsion
coefficients sufficiently affect the computation, the value of _, is simultaneously increased to accentuate

the torsion term. Since not all marching boundaries are physical boundaries, an input option is available
that will override this emphasis on orthogonality for either boundary.

1.5 Preservation of Initial Wall Boundary Shape

In applications for which the shape of the wall boundary is defined by large geometric gradients,
such as for turbine blades, sharp corners, and the leading edges of airfoils and wings, sufficient points need to

be placed in the appropriate regions of the initial grid to accurately define the geometry. If flow-field
gradients are weak in these regions, the standard grid-redistribution algorithm will cause points to be
dispersed, leaving insufficient points to properly describe the surface. To maintain necessary clustering in
these regions, on user request a new variable is introduced that is a function of the geometry gradients that
define .the boundary shape. The weighting parameter now becomes a function of both flow-field gradients

and geometry gradients. The solution procedure will therefore redistribute the points into regions of high
geometry gradients as well as into regions of high flow-field gradients. Both the start and end wall
boundaries are treated. A merging technique is used to integrate the boundary and internal redistribution, so
that the internal flow is controlled only by the flow-field gradients.

The original weighting function was defined in Eq. (3) as 03= I+A] "B where j? is a function of

Oq/Os. When the geometry option is invoked, f becomes a function of both 3q/Os and 3g/Os, where

f(Og/Os) is equal to the radius of curvature R at the wall boundaries. The radius of curvature is defined as

R: 7s s'- +
where the derivatives are computed from the spline coefficients.

The full effect of the geometry function should be felt at the wall boundaries; it should not be a
factor in the internal grid redistribution. Hence the final weighting function takes the form

03 = I + Af¢B

where fc=Cqf(q)+CJ(g)and the constant C_ nornaally equals 1. The constant C_ equals 1 when the

upper and lower wall boundaries are being adapted, but it must be decreased away from the walls until Cg = 0

internally. The value of the aspect ratio was chosen to drive the rate of decrease of Cs; i.e., Cg :I-4A,,

where A_ is the aspect ratio at the maximum radius of curvature. Regardless of the value of A_, c_ remains

positive for a minimum of four steps from the boundaries and decreases smoothly. When the upper

boundary is approached, Cs must be turned on when necessary and increased with each step, and f(g)

becomes a function of the upper wall boundary only.

10

It is also possible to adapt only to the geometry gradient• If this is requested, C,I = 0 and C_ = I

throughout the flow, and f(g) is computed for each adaption line, based on the local geometry of that line.

This option has proven to be a useful tool for improving the starting grid before any solution is obtained•
Points will be smoothly clustered with respect to tile geometry gradients.

1.6 Finite-Volume Grids

In applications using finite-volume techniques, each flow-field variable (q) is evaluated at the cell
center instead of the nodal point of the grid. These cell centers are usually positioned at the average of the
surrounding grid points (four for 2-D and eight for 3-D). This creates a solution file that has one less point
in each direction than the grid file. The finite volume module in SAGE interpolates the q values onto the
grid points before performing the adaption. On conclusion the q values are re-interpolated at the new cell
centers.

A feature of finite volume grids is the definition of the outermost boundary cells in all
computational directions as 'ghost cells' containing specified flow values. The adaption procedure destroys
these values and SAGE employs a very simple method to replace them: on output, each ghost cell contains
the same value of q as the adjacent internal cell. It is therefore highly recommended that the user re-apply
the boU'hdary conditions before processing the new grid. This is true for both 2-D and 3-D grids and implies
that if a user wishes to adapt one plane for testing purposes, an internal plane would be more appropriate.

1.7 Multiple Grids

When investigating the flow around complex structures, computational grids are frequently
organized in multiple-grid format. This enables each individual grid to be of manageable size while
maintaining a single dataset and also allows for overlapping grids• The original SAGE code could only adapt
single grids and it was therefore necessary to separate the grids before adaption. The latest version of SAGE
can read and write datasets in multigrid format and provides an input control parameter to specify which
grid to adapt. In addition, a feature is available to transfer data between matching zonal boundaries (with I :1
mapping) in separate grids. Some or all boundaries of each individual grid will match in some part to
boundaries in one or more of the other grids. It is important that common boundaries, where data in
separate grids represent the same location in computational space, retain the same grid and flow
distributions. This can be seen in the simple two-part multiple grid shown in Fig. l l(a), where the shaded
plane is common to both grids. After adaption, both planes must still contain matching data.

• (b) adaption j_C'j,] /'l (c)
(a) grid 2 dircction,/_," I / I

dwcctlon

Figure 11. Simple multi-zone grid. (a) Common plane; (b) restricted adaption direction with
original SAGE; (c) preferred adaption direction, using plane trcm_fer proce_hlre.

The adaption technique used in SAGE is a marching scheme, and therefore the order and direction
of adaption have a marked effect on the final grid-point redistribution. One way to adapt the two grids and
still retain the common boundary data is shown in Fig. 1 l(b): the common plane is adapted first, with plane

marching occurring in opposite directions. The export,qmport feature enables the order of adaption shown
in Fig. l l(c): after grid 1 has been adapted, adapted data from the final plane can be transferred to the first

plane in grid 2. Then, using the merging feature (MGPLS) to prevent the first plane of grid 2 from being

11

corrupted,adaptioncancontinuein thesameplanemarchingdirection.All threesteps(adaptionof grid 1,
datatransfer,adaptionof grid 2) canbeaccomplishedin the sameexecutionpass.Figurel l(c) showsonly
thesimplestmultigridstructure.In reality,multiplegridsmaycontainmanygrids,with surfaces,or subsets
of surfaces,matchingto morethanonegrid. Inputoptionsareavailableto handlethis andexamplescanbe
foundin Section3.

1.8 Outer boundary movement

1.8.1 Moving the outer boundary. Once a solution has been obtained on an initial grid, it may
be apparent that the location of the outer boundary of the grid is inappropriate. For example, a shock wave
may have developed that passes out of the boundary; or alternatively, no features can be seen in part of the
outer region and much of the grid is wasted. The ability to move the outer boundary is a very useful feature
and is invoked by adding the input option MVBOUND to the input parameter list. The new boundary
location moves along each existing grid line. If the boundary moves out, the new location lies on the
extension of the vector joining the last two existing points. This feature has been extensively used for
applications that compute flow solutions on a vehicle configuration flying a trajectory over a wide range of
angles of attack.

The user has three options for determining the new boundary. The first is the most simple: moving
the boundary point a certain percentage from its current location, either in or out. Along each adaption
fine, the value of sin,. is increased or decreased by a user-supplied percentage (controlled by

MVBOUND=±p, wherep is the percentage), and then transformed back to (x,y,z) to form a new boundary

point.
The second option permits the user to parallel the outer shock (MVBOUND=999.) defined by the

requested variable, INDQ. The outer boundary will be moved in or out for each adaption line, depending on
the location of the shock. A search is made, starting at the outer boundary point of each grid line, and

moving towards the inner boundary. As soon as a significant change in gradient is encountered [givefi as
3q. /0_,1

f(qi)-flqi_ l)>.O001 where f(qi)=@/_LI], it is assumed that the shock location, s,._,,,,,k,has been
os /osIm_x. = . :

found. The relative distance of the new boundary point from the shock location is a function of d also

provided by the user, such that s.......,,_, = sio,,,,k + s,,,,,x,,,,* d,., /100.0 . If a shock is moving out from the current

boundary, this method will only expand the grid by a given amount and may not project the shock location
sufficiently outside the boundary. If it is obvious that the shock will still not be contained within the new
boundary, moving the boundary out with option ! and then applying this second option, will be more
appropriate. Note that when the new location is dependent on a gradient location, the outer boundary may
not be smooth and the smoothing parameters NSM and NSM1 may be required. The discontinuities occur
since the outer regions of a grid (where a shock may be found) are often the most sparse.

The final option is to move the boundary location based on a constant specified value of a flow
variable, for example, a line parallel to a certain density contour. Note that only variables given in the
input Q file can be used to move a boundary, not any internally computed values.

1.8.2 Point redistribution after boundary movement. Once the new boundary edge has been

located and the new (x,y,z) at s,,,x Computed, the internal grid points must be redistributed. Adaption is not

an option: the code will automatically set NOUP=.true. A smoother point distribution is first required, then
adaption can take place as a subsequent step.

There are two options for reclustering points without adaption to the flow. With no other
information, the code will automatically redistribute the points proportional to the original grid-point
distribution, i.e.,

Si,kr_, _ Siold Smax,.,_. /Smar.ta

The second reclustering method is based on the stretching algorithm of Vinokur(1983) and is invoked by
inputting RECLUST>0 and providing information for the first and last mesh spacing along the reclustering
line.

12

1.9 Vinokur Reclustering

This method is appropriate for redistributing grid points when very snlall mesh spacings are required
at the wall as, for example, in viscous grids. The user can specify the first spacing off the wall and this

algorithm will create a smooth mesh-size expansion through the boundary layer. The method can be used to
redistribute points after a boundary movement, or as a stand-alone alternative to the basic grid adaption

procedure.
The reclustering method is based on the I-D stretching algorithm of Vinokur (1983) and is invoked

by inputting RECLUST>0 and providing information for the first and last mesh spacing along the
reclustering line. The redistribution can apply to the entire domain (RECLUST=imax) or to a portion of
the domain (e.g., RECLUST=n will redistribute the first n points from tile wail).

The Vinokur algorithm redistributes points as si,_, =f(d,.,d e) where d,_. and d e are user input

variables that help to define the first and last As spacings needed by the algorithm. The last As spacing,

AS,.m_x,is calculated as
As,,.,,_ = des....../(npts- !)

where the default value of de is 5.

There are three options to assign a value for the first wall spacing, As.,,n:

I) default to the original Asl;

2) input dw as the required value of As.,_,tt;or
3) input dw = 999 and then input the first (j=l) and last (j=jmax) wall spacings.

Option 3 is provided to overcome a I-D limitation of the algorithm: that there is no smoothness
from line to line. This is emphasized in regions where the value of As,,..u is too small with respect to Sm._.

If the grid is expanding in size downstream, the Asw,,Uthat is appropriate near the vehicle nose may be too

small at the outflow plane. Option 3 is provided to vary the first spacing off the wall while marching along
the body surface, if d. = 999, then dw, and dw2 must be input. These are the wall spacings at the first line

0"=1), and last line _:jmax) and enables d., to be computed internally for eachj. If pj is the distance along

the wall (at i=l) from the currentj line to thej=l line, then

Asb :a+b._p_j where a=d,,,, and b=(dw2-d..,)/ff_i.,,,,)

As mentioned above, it is possible to recluster the grid points without adapting and without moving
the outer boundary. An input of RECLUST=n, n>3 and MVBOUND=0 will invoke the re-clustering
algorithm between points s, and s.. Here, n could indicate the edge of the boundary layer, or the entire

grid. Ifn<imax, the 'outer' edge spacing sent to the reclustering algorithm is As. = (s,,+_- s._,)/2.

1.10 Optional Versions of SAGE

1.10.1 Blanked grids. Certain types of complex multiple-grid structures utilize the facility in
PLOT3D that blanks out regions of overlapping grids. However, the use of multiple, overset grids with
blanking creates a new environment for the adaption algorithm. The adaption procedure used in the SAGE
code is a 1-D approach; i.e., a single line is adapted before stepping to the adjacent line. The integrity of
the adapted grid is maintained by defining restraining forces be_,een the current adaption line and
previously adapted lines, either within the current plane or on the previously adapted adjacent plane. The
method assumes that there are an equal number of grid points along each line; i.e., there is a one-to-one
correspondence between a point and its associated restraining forces.

Overset grids are created in the normal structured manner, with equal points along each line.
However, a flag associated with each grid point indicates whether the point should be included as an active
part of the grid. This method creates adjacent grid lines with different numbers of active grid points, and
even more problematical, regions of grid holes (i.e., one or more gaps along the line). The challenge for the
SAGE algorithm and code is to develop a method that can accommodate these complications. Section 5 of
this document contains a description of the new method that was developed and it can be seen that it adds
complexity to the code. As a result, it was decided not to include this feature in SAGEv3 at this time.
However, SAGEv2B (Version 2 with Blanking) is available from the authors. The description in Section 5

applies to this code but will remain appropriate if the feature is added to a later version of SAGE.

13

1.10.2 Cyclical and periodic boundaries. Certain classes of grids used by flow-field solvers are
not suitable for adaption using the basic grid formulation described thus far. The self-adaptive grid procedure

is a marching scheme; i.e., the solution along each line is influenced only by previously adapted lines. Tile
adaption of the frst grid line is based on flow gradients only, but as marching proceeds, the redistribution of
points is dampened by the torsion effect. As a result, the final adaption line will be somewhat less adapted
to the flow-field gradient than the initial line. This implies that the scheme cannot be directly applied to
cyclical and periodic grid structures, since common and/or matching boundaries will show as discontinuities.
For 2-D problems, these difficulties have been overcome by including both an iterative and a rearrangement
procedure that can be requested by the user. However, these options are not provided in this version of
SAGE even when TWOD is specified, and interested users should contact the authors to obtain a copy of
SAGE2D and its documentation. For 3-D grid structures, maintaining periodicity at matching planes is a

more difficult task. Since the initial grid and flow field on matching first and last planes are identical, setting

the plane torsion parameter (3.*) to zero produces matching adapted grids on these planes. In this case, the

adaption of intermediary planes has no influence on subsequent planes.

1.11 Appendices

1.11.1 Appendix I: Derivation of A and B. A and B provide self-adaptiveness to the adaption
scheme. These two parameters ensure that all repositioned grid nodes maintain grid spacing to within the
user-requested mesh-size limits (ASMm and ASMAx).

1.11.1.1 Calculation of A. We wish to relate A to the input values of A%n u and A%tax.

A is constant throughout the entire mesh, and hence the 1-D relationship given in Eq. (2) holds. From the

original definition of f in Eq. (9), 3_,,_ = 1 and f,#, = 0; therefore, from Eq. (3) we have COm__ = l + A and

co,,, = 1. From Eq. (2) (rewritten as ASs = K/o_,) we can see that the minimum As will occur at K/_

Similarly, the maximum As occurs at K/comi _. We therefore wish to set AsMm = K/(i + A) and ASMAx = K.

These can be solved simultaneously: by eliminating K we get the expression given in Eq. (10)

A - ASMAx 1
_; MIN

1.11.1.2 CalcUlation of B. This calculation is more complex. B is found by an iterative

procedure and will change for each j line. The objective is to determine which value of B will give the
minimum computed As; equal to the requested minimum,

minimum As,. (An example of a plot of B vs. AS,,i_ is

shown in Fig. 12). We need to find B at the requested
ASM;N. To do this, we assume an initial value of

B(= 1.0), evaluate co, and then solve for the new As"

using Eq. (5). Although Eq. (5) is true only for the
initial line, it is assumed here to hold for all j in order

the B calculation. If ASMIN--minAs_)] isto simplify
1

small, an acceptable value of B has been found. If not,

a new B is computed from B_÷_)=B _)+AB (_), o) is

reevaluated, and the procedure repeated.

ff'_J can be found from the definition

____min(As i (AsMm - rain AS___)) _s-,olim _B--_ (21)

As mentioned in the calculation of A, we know
that As, is a minimum when c0i=l+A, and by

substituting this in Eq. (5) and differentiating, we
obtain

ASMIN. For each value of B there exists a

ASMIN

E

A

/

f

A

converged B

Figure 12. Calculation of B.

14

where

We knowthat

n, l

l=l f_i

(22)

Hence, the next step is to evaluate O(p/OB. With this definition of % we can take the summation sign out
of the differential and obtain

,_]
OBt, l:l col) #=iOBto,)_)

"' 0 1

I+ 8)
tl i

=-AZ ftBl°g_z
l=l 031

Equation (22) can now be solved, and after substituting for

//i 1 --

Z_Smi. (1 + A)

from Eq. (5), we obtain

2 111

OOBmin(Asi)= A(I + a)[min(As,)] _._ ft" log f
StoaT; I= I 03 _

Finally AB can be obtained from Eq. (21), giving B.

1.11.2 Appendix lI: The intersection of a 3-D vector, 17, with the arc-length vector, _. This

technique is used to obtain the /_ vectors used in the orthogonality terms and to find the location of s" and

sT'. For example, to determine s_ we need the segment in which the torsion vector /' from the grid point

(i.j-l,k) intersects thej line. To evaluate the direction cosines of the /_ vector, we need to find the segment

l-->l+l along thej line that contains the intersection of a vector acting from (i.j-l,k) that is normal to

thej segment. For s,* and /_*, we are concerned with the linej in the plane k-1. In all cases, the technique

for finding 1 is the same.

Figure 5 shows the case of the torsion vector /', computed for the point (i.j,k) and emanating from

the point (i,j-l,k) at D. This vector t" most likely will not lie in the plane described by ADC (or the

equivalent i plane) and thus its projection onto the plane is required. The value of s" in the solution

equation lies at A', the intersection of the projection of [onto the ADC plane and the arc-length vector,

_. The vector h (=nj+n;j+n_k) is the unit normal to the plane ADC and is computed by the technique

described in Appendix llI. Both]aa']and IDA'[are required in the code.

From vector addition, we can write

AD÷ [DU]t -[NA']_ (23)[aa'[_ = _ ^

15

Since the coordinatesof A and D are known, AD(=a,/+a,.j+af) can be evaluated, hence

1AA' IDNI and INA'Iare the three unknowns. By equating coefficients of), and in the vector
Eql (23), we can obtain a set of three equations with three unknowns:

IAA'Is, =a, +IDNItx-]NA'[,,,, IAA'Is, =a;. +IDNIt;,-[NA'In_ and [AA'Is= =a z +IDNIt:-INA'In,

These equations can be solved for]AA' I by computing the relevant determinants.

iDA"1 is also found by utilizing vector addition. We have

D_A"(= IDA'I DA') =]aa'[_ - A_D

a,ld, since the lengths of the left- and right-hand sides are equal,

IDA']2 = (]aa']sx -)2 + (]aa']s; - a;)2+ (iaa,[s _ _ az)2

1.11.3 Appendix III: Definition of normal vectors. The vector normal to a plane is required
for the calculation of vectors _, ii*, t;, and /;*. This appendix describes the derivation of a general unit-

vector normal, h, at a given point (i,j,k) and normal to the plane ik passing through the constant j-1 line.

This specific orientation is analogous to i}. Figure 8 shows such a vector acting at D that represents the
normal to the shaded surface. In the figure it can be seen that there are four possible planes passing through

(i.j-l,k)' GDF, FD,VL MDQ, and QDG. Any vector normal required in the code is calculated as the average
of the normals to each of these four planes. (When the node (i,j-1 k) is on or close to a boundary, only one

or two of these planes will exist.)
The normal to a plane is derived from the cross product of two vectors lying within the plane, with

care taken to ensure the correct order of the operation (this is why the input grid should be organized as a
--) --_ .--)

right-handed system). In the example shown in Fig. 8, the four cross products are DFxDM, DFxGD,
--+ --_ -4

QDx GD, and QDx I_M. The required unit normal is thus the unit vector representing the sum of these

four vectors.
This picture gives an idealized view of the defined planes. In reality, some of the required lines have

already been adapted and some have not. In Fig. 8, the point F could be significantly different from D,
since D is an already-adapted point and F is still part of the initial grid. The code solves this problem by

forming a block of data around the ct, rrent j fine that includes all i for lines j-I=_j+l for planes

k-I _k+l. Lines that have not yet been adapted (e.g.,j+/ at k or j-1 at k+l) are proportioned with

respect to the s, at j; this relocates the points for a smoother computational effect.

16

2. SAGE USER GUIDE

2.1 Overview

The SAGE code is based on the self-adaptive grid method developed by Nakahashi and Deiwert
(1985). This guide contains information that will enable the user to run the code with little knowledge of
the mathematical concepts employed in the development of the adaption technique. Included is a detailed
description of the input-control parameters, along with routine descriptions and nomenclature. The code
stands alone and has been run on many computer systems. Users wishing to understand and/or amend the
code can find the details of the mathematical background in tile first section of this document.

The first step in the code is to read two data files: one that contains tile coordinates of tile grid

(x,y,z) and another that contains the corresponding flow-field variables, q. It is assumed that both these files
are in the format (given on the next page) associated with the plotting software package PLOT3D. A

single-grid, finite-difference, 3-D format is assumed unless re-specified by the user. The next step is to
adapt the grid with respect to the user-supplied input-control parameters. Adaption takes place as a
sequence of one-directional adaptions, with the input-control parameters determining the order of
adaption. Each plane (i.e., 3-D surface) is adapted in one direction only before stepping to the next plane.
Figure I (see page 2) shows a small section of a 3-D grid: adaption in the i direction (stepping in j) has
already been performed on the first plane. The code then steps to the next plane and performs the same
directional adaption on this plane. A 3-D adaption is performed by a sequence of adaptions: once the grid
has been adapted in one direction, the adaption can be repeated with a new parameter-input set describing
another direction. (It should be noted that different orders of tile adaption direction will produce different
adapted grids.) When all adaptions are complete, the code sends the redistributed grid points and the
corresponding interpolated flow variables to two new data files, also in PLOT3D format.

The analysis that generates the algorithms used in tile code is given in detail in the first section of

this report. Briefly, the redistribution of points is controlled by parameters related to torsion and tension
springs, and by the maximum and minimum allowable grid spacings. Along each grid line, (x,y,z) is
transformed to a 1-D arc-length variable, s. If we assume that adaption (within a plane, k) steps in the j

direction, the tension spring constants, co, are evaluated at each point (i,j,k); i.e., mi =f(s<j.k) and are a

function of the gradients of the user-chosen flow-field variables. The torsion parameters (shown in Fig. 2)

zi = f(ss j k. si.j-t,_,si4-2,k) and _, = f(si.j. _,s,,;,___,Si,j,k_2) are the link between the current line and the

previously adapted lines. These are the parameters that maintain the integrity of the grid by controlling
straightness and orthogonality within the plane and between planes. With the evaluation of these variables,
a system of (n_- 2) equations (given in Eq. 8) is developed for the currentj line and solved as a tridiagonal

system. Once the adaption is complete for the current j line, the code steps to the next j line (either
forward or backward) and repeats the same procedure. At the end of the current k plane, the code moves to
the next plane and tile process is repeated.

There are eight major steps taken in the code:

!. Input of three data files: initial grid, flow-field solution, and user-control parameters
2. Initialization and reorganization of data for computational purposes
3. Adaption along the start line on the start plane with the 1-D technique
4. For each subsequentj line on tile initial plane:

a. computation of variables that define the torsion and tension springs (0_ and _),

and hence coefficients of the tridiagonal matrix defined by Eq. (8)
b. iteration to find new values of s, and hence (x,y,z)

5. Repetition of step 4 until all lines are complete on this plane
6. For each subsequent k plane, computation of tile torsion spring _t for inclusion in the

coefficients of tile solution Eq. (8)
7. Repetition of steps 4 through 6 until all planes have been adapted
8. Output of new grid and interpolated flow-field files in tile original format

17

2.2 Executionof the SAGECode

The following is an example of the conlmand file to run the SAGE code on a UNIX system. SAGE
is written in FORTRAN and is self-contained; sage is the executable module.

cp xk_.grdfi)rt. 7 ! copy grid file to unit 7
cp q.fim fort.8 ! copy solution file to unit 8
sage < sage.inp ! run SAGE code with sage.inp containing user control parameters
cpfi_rt. 10 x)_z.out ! name the output adapted grid file
cpf)rt, ll q.out ! name the interpolated fimction file

where sage.inp is in namelist format ($NAMEL). {Note: Some systems may need the READ(5,NAMEL,...)
Statement in subroutine INITIAL amended to READ(5,NML=NAMEL,...)}.

The remaining files are in PLOT3D formatted (ASCII) or unformatted format:

xyz.grd contains the initial grid points (stored as a right-handed coordinate system)
q.fim contains the flow-field variables to which the grid is to be adapted
.Wz.out contains the adapted grid points
q.out contains the flow-field variables interpolated on the adapted grid

In addition, an output message file is associated with unit 6, which usually defaults to the user's output
device. For other operating systems, the user must appropriately assign the six input/output files.

The following are the read statements for single-grid 3-D PLOT3D unformatted input files:

xyz.grd:
READ(Y)
READ(Y)

q.fun :

where

READ(8)

READ(8)
READ(g)

IMAX,JMAX,KMAX
(((X(I,J,K),I = 1,IMAX),J = 1,JMAX),K = 1,KMAX),
(((Y(I,J,K),I = 1,IMAX),J: 1,JMAX),K = I ,KMAX),
(((Z(I,J,K),I = 1,IMAX),J = I ,JMAX),K = i ,KMAX)

IMAX,JMAX,KMAX
FSMACH,ALP,RE,TIME
((((Q(I,J,K,N),I = 1,IMAX),J = I ,JMAX),K = 1,KMAX),N = 1,NDIM)

IMAX=number of points in the i direction of the grid file
JMAX=number Of points in thej direction
KMAX=number of points in the k direction
NDIM=number of Q variables (default=5)

Note: The read statement for formatted (ASCII) files is the same except READ(7) is replaced by

READ(Y,*) etc.

As seen in the above format, five flow-field variables are expected in the Q file. PLOT3D

preassigns 9, pu, pv. pw, and e, but since the SAGE code requests only the index of the function, any

variables may be storedl Note that it is possible to hand|e any number Of flow_field variables by changing
the value of NDIM in the parameter statement at the beginning of each subroutine and recompiling. Also
contained in the parameter statement are the grid dimensional variables ID, JD, KD, and IMX. These are
used to define the required maximum dimension of the grid arrays. Because of the internal switching of data,
these values may not coincide with IMAX, JMAX, and KMAX. If the assigned code dimensions are too
small, a message will be sent to the user stating the minimum dimension requirements for the current

application. If the grid is in multiple grid format, an additional record occurs at the beginning of each file
stating the number of grids, and the grid dimensions are supplied in dimensioned arrays. FSMACH, ALP,
RE, and TIME are not used in the code and may contain dummy values. They are part of the PLOT3D

package and are displayed on the output plots.

2.3 User Input Parameters

The file sage.inp is the user-supplied, input-parameter control file. The grid adaption is based on
the user's choice of these input parameters, which are listed and briefly described below. This is followed by

a more complete explanation of each parameter. The input file sage.inp uses the namelist format, since

18

generallyonly a fewof the input parametersneedto bechangedfrom the defaultvalueset by the code.
Thesedefaultvaluesareshownin parenthesesin the list givenin section2.3.1. If morethanone adaption
passis to bemade(for example,a two-directional adaption or multiple grids), the subsequent adaptions can
be made on the adapted grid by linking up to 10 sets of namelist inputs within tile same sage.#lp file. For
multiple grids, these sets can also contain multiple export/import passes.

Before describing the input parameters, some terminology needs to be clarified:

The term p_h_ysical domain is used to reference the complete grid defined by the input grid file, i.e.,

the grid bounded by IMAX, JMAX, and KMAX. The a..daption domain is the part of the grid, as defined by

the input-control file, that is to be adapted, i.e., (IST,IEND), (JST,JEND), (RST, KEND). These two
domains can be equivalent. The direction i, j, or k refers to the direction of the grid coordinates as defined

by the order in which they are stored in the grid file. The first index (normally containing x) is named the i
direction, the second index is the j direction, and the third index the k direction. This implies that if data
happened to be stored as (z,x,y) instead of (x,y,z), i would represent the z direction. Regardless of the order,
the data must be stored as a right-handed coordinate system. The adaption direction is used to define the

I-D line along which adaption (redistribution of points) takes place. In the analysis and in the descriptions
below, this direction is always i for convenience, but the user may request i, j, or k. There are two st__tC_pp_i__
directions: one within the plane, defined asj in the analysis, and the other in the direction of plane

marching, defined as k. Although the analysis and descriptions in this report assume this particular order of
adaption and stepping, the code makes no such a priori assumptions, since the order is controlled by the
user's input-parameter file. Reference is also made to grid boundaries. Side-edge boundaries refer to the start

and end poinls at the edge of the adaption line (assumed to be i in the analysis). These are the edges that are
controlled by the NEDGE parameter. Marching boundaries are the start and end lines of the stepping

(within the plane) direction (assumed to be j). Adaption close to these lines are affected by the parameters
ORTHS(I), ORTHE(I), and MGSTEPS, as well as by some internal controls. Planes juxtaposed to start and
end planes are affected by ORTHS(2), ORTHE(2), and MGPLS.

2.3.1 Parameter control file, sage.inp. The input parameters, with their default values (in

parentheses) and short descriptions, are described below. They are not in alphabetical order, but grouped by
category or affinity. Reminder: $NAMEL must begin in column 2.

$NAMEL

FORMI (FALSE)
FORMO (FALSE)

IST (l)
IEND (IMAX)
JST (1)
JEND (JMAX)
KST (I)
REND (RMAX)

IJPLANE (TRUE)

JKPLANE (FALSE)

IKPLANE (FALSE)

ISTEP (FALSE)

JSTEP (TRUE)
KSTEP (FALSE)

INDQ (1)

IQ(8) (o)

set to .true. if input PLOT3D files are formatted (ASCII)
set to .true. if formatted output PLOT3D files requested

first adaption line in i direction
last adaption line in i direction
first adaption line inj direction
last adaption line inj direction
first adaption line in k direction
last adaption line in k direction

the adaption surface lies in the (i.j) plane, with
plane stepping occurring in the k direction
the adaption surface lies in the (j,k) plane, with plane stepping
occurring in the i direction
the adaption surface lies in the (i,k) plane, with
plane stepping occurring in thej direction

=.true. for stepping in the i direction within the plane:
e.g., it cannot=.true, if JKPLANE =.true.
=.true. for stepping in thej direction within the plane
=.true. for stepping in the k direction within the plane

index of adaption flow-field variable, q; default of 1 =:> p

enables a combination of q variables to drive the adaption

19

RDSMAX
RDSMIN

CLAM(l)
CLAM(2)
CT(I)
CT(2)

NEDGE

MGI
MG2
INTER
NFILT

MGSTEPS
MGPLS
MARCH
MARCHPL

ADD
LSTADD
LENDADD
SUB
LSTSUB
LENDSUB
REMOVE

NOUP
SAVE

ORTHS(2)
ORTHE(2)

GEOM

QFUN

NOQ
LNSING
PLSING

TWOD
FV

MGRID
EXPORT
IMPORT

MPLANE

IS,IE
JS,JE
KS,KE

MVBOUND
RECLUST
NSM
NSMI

NOSESM
DSW
DSE

(2.0)

(.5)

(.01)
(.ooo_)
(:5)
(.5)

(0)

(0 or 4)
(0 or 4)
(2)
(2)

(0)
(0)
(FALSE)
(FALSE)

(0)
(IST)
(IEND)
(0)
OST)
(IEND)
(0)

(FALSE)
(TRUE)

(TRUE)
(TRUE)

(FALSE)
(TRUE)

(FALSE)
(0)
(0)

(FALSE)
(FALSE)

(0)
(FALSE)
(FALSE)
(I)
(0,0)
(0,o)
(0,0)

(o)
(o)
(lo)
(lo)
(o)
(o)
(5.0)

relative maximum allowed As : ASMAX >_1.0

relative minimum allowed As : AsMIN"(!.0

=Z, coefficient of torsion parameter "c, I < X<_ t0 -6

=_.*, coefficient of plane torsion parameter, _; same range as)_

proportion of "straightness" to "orthogonal" for torsion vector t"
as CT(1), but proportions plane torsion vector, 7"

override control on side-edge adaption:
l=both edges, 2=start edge, 3=end edge
used with NEDGE: number of points to merge start-side spacing
used with NEDGE: number of points to merge end-side spacing

order of interpolation: 2, 3, or 4
number of passes to filter (smooth) q and to

number of merging lines for within-plane torsion controls
number of merging planes for between-plane torsion controls
=.true. to extrapolate end adaption line throughout remaining lines
=.true. to extrapolate last adapted plane throughout remaining planes

=n to add n points between each node in selected range
lower limit of range for adding points (i.e., when ADD>0)
upper limit (if ADD=0, values are ignored)
=n to delete n points between each node in selected range
lower limit of range for point deletion (i.e., SUB>0)
upper limit (if SUB=0, values are ignored)
removes requested number of points from outer grid region

=.true. if no adaption required (e.g., for moving outer boundary)
=.false. to suppress output of data files

=.false. to remove orthogonal constraint at start boundaries
=.false. to remove orthogonal constraint at end boundaries

=.true. to include geometry at wall botmdaries in adaption variable
=.false. to remove f(q) from adaption variable
(used with GEOM=.true. only)
=.true. if the q file is not used
=n if the line n is common to all adaption planes
=n ifadaption plane n is collapsed to a line

=.true. if datasets are 2-D (see section 2.4.1)

=.true. if q file in finite-volume format (2.4.2)

adaption grid number if multiple grids
denotes an export plane transfer, not an adaption pass, multigrid only
denotes an import plane transfer, multigrid only

: ÷

defines plane number, used for multiple grid export and import only
defines i direction domain for plane transfers
definesj direction domain for plane transfers
defines k direction domain for plane transfers

nonzero to move the outer boundary
method to redistribute points, with or without boundary move
smoothing filter in the line-stepping direction for outer boundary
smoothing filter in the plane-stepping direction for outer boundary
smoothing across planes with singular line at nose

wall spacing, only for RECLUST>0
outer edge spacing, only for RECLUST=I or imax

20

DSW1 (0)
DSW2 (0)
DSN (5)

only for DSW=999,wall spacingatj=l
only for DSW=999,wall spacingatj=jmax
percentageto expandwhenmatchingouterboundaryto shock

First adaption Although many parameters have just been described, generally only a few are used

for each adaption. The best technique, even for experienced users, is to retain as many of the default
parameters as possible, view the results and then adjust some parameters if necessary. For some 3-D
problems, it is clear which plane should be the stepping plane so the PLANE parameter, along with the
STEP parameter, can be initially chosen. Note that only one PLANE parameter and one STEP parameter
are needed for one adaption pass. Also, a flow-field variable should be chosen for INDQ that shows the flow
features most clearly. To find appropriate within-plane parameters, adapt on only one plane and/or turn
off the connectivity between planes (i.e., CLAM(2)=0) to see the set of 2-D adaption planes. If there are
any lines common to all planes or ifa plane is collapsed to a line, PLSING and/or LNSING must be set. If
the first adaption pass is not acceptable, try increasing the ratio between RDSMAX and RDSM1N,
decreasing CLAM(l), and/or setting NEDGE=I. Since many of the parameters have interdependent effects,

it is better to change only one or two of the parameters at a time.

2.3.2 Explanation of user-supplied input parameters. The following is a detailed explanation
of each of the input parameters; they are listed in alphabetical order.

ADD When this is nonzero, points are added between adjacent mesh points within the requested
range (see LSTADD, LENDADD). For example, if ADD=2, two points will be added between each
consecutive grid point. Adding occurs only in the adaption direction and not in either of the stepping
directions. Ensure that the added points do not cause the coded array dimensions to be exceeded. ADD and
SUB can be used in the same pass to move points: note that the ADD will occur before the SUB, so the
range on the SUB parameter needs care.

CLAM CLAM(I)=2, and CLAM(2)=X * define the magnitude of the torsion parameters "c and _,

respectively. As the values of these parameters decrease, more points will be pulled into the high-gradient
regions, at the possible expense of grid smoothness.

CLAM(1) controls "t, the torsion parameter within the plane; its order of magnitude can lie between 10 -6

and 1. A value of zero produces a set of independently adapted lines, possibly generating crossed grid lines.
As)V increases, the grid becomes smoother but less adapted.

CLAM(2) controls the magnitude of _, the torsion between planes. It has the same range of values as

CLAM(I); however, if it is zero, the adapted grid may still be acceptable. For periodic planes (i.e., if the
first and last planes are the same), setting CLAM(2)=0 is necessary to prevent a discontinuous grid at the

juncture.

CT CT(1)=C, and CT(2)=C,; they represent the direction of the torsion vectors t and t'"

(whereas)v and _,* are their magnitude in these directions). They have the range of 0 < C,, C7 < 1.0, where a

value of zero emphasizes orthogonality and a value of one emphasizes straightness. The default of .5 places
the torsion vectors halfway between. This value is suitable in most cases, but it may cause problems when
side boundaries are concave or when adapting on already adapted planes.

DSE This is used only when RECLUST=imax (note: RECLUST=I assumes RECLUST=imax) and
provides the outer edge spacing. The Vinokur algorithm needs the first and last edge spacing along the
recluster fine. DSE is the multiple of the average mesh size As, and is defaulted to 5. Hence the last-edge
mesh size input to the algorithm is DSE*s/(npts-I) where s is the new s,,,, if the outer boundary

location has changed. If 3>RECLUST<imax, the code computes the outer edge spacing to match across the
boundary with the existing grid spacing and DSE is not used.

DSN When MVBOUND is based on a shock distance or a flow contour, the code finds the

requested flow feature, s,j,,,,_, and places the new boundary point outside'of it. DSN (default=5) determines

the new boundary location as s,j,,,,, +DSN* s......./100., where s is the old s,,,,,,.

21

!

DSW This is the first mesh spacing at the inner boundary for the Vinokur algorithm (RECLUST*

0). If no value is input, tile original AsI is used. DSW can be very small if necessary, but if too small, there

may be insufficient latitude to permit tile algorithm to reach an appropriate solution downstream, creating
a jagged grid. This problem may be resolved by providing a first and last wall spacing (DSW1 and DSW2). In
this case, set DSW=999, and input DSW1 and DSW2. The code will compute DSW for each line.

DSWI, DSW2 These two parameters replace the single DSW and may resolve the jagged problem
mentioned above. A very small value of DSW may be appropriate at the first active line 0"=1) where s..... is

small, but if the grid expands rapidly, the value of Sin,,._ downstream is too large to accommodate the same

small wall spacing. In this case, DSWI will be used at j=l, and DSW2 will be used at j=jmax and the
intermediate values will be interpolated.

EXPORT For multiple grids only. When EXPORT is set to .true., the user-supplied parameters for

this adaption pass describe the current location of a plane of data to be transferred from one location to
another, most probably in another grid. This parameter set must be followed by an IMPORT parameter set
that describes the plane's destination.

FORMI If equal to .true., the PLOT3D grid and Q input files (assigned to units 7 and 8) are
assumed to be ASCII (formatted). Default is unformatted. Note that if SAGE is compiled as r8 (double

precision), then only formatted files can be used.

FORMO If equal to .true., output files will be formatted (the unit numbers depend on the number
of adaptions and multiple grid rereads). Default is unformatted.

FV This is set to .true. if the q file is in finite-volume format (i.e., the q variables are evaluated at
the cell centers and not at the grid points). See section 2.4.2 for a more detailed description of the finite-

volume option. ::

GEOM This parameter should be used when a wall boundary is defined by high surface gradients
and the standard grid redistribution has moved points in such a way that the original shape has been
deformed. When GEOM is set to .true., the code will add the surface curvature function to the flow-field

gradient function in the wall boundary regions. Points will thus be maintained in or redistributed into regions
of high surface curvature as well as into regions of high flow-field gradients. The contribution of the
geometry function will proportionaIly decrease away from both boundaries, with the internal lines
controlled by the flow field only. If GEOM=.true. and QFUN=.false., adaption will be to geometry gradients

only, for all grid lines.

IJPLANE, IKPLANE, JKPLANE These parameters define the plane on which adaption takes

place. By default, they also imply the direction of the stepping plane. The input parameter file needs only
one of these parameters to be set to .true., and the code will automatically assign .false. to the other two.
IJPLANE=.true. indicates that the plane represented by (i.j) will be the adaption plane and that plane

stepping will occur in the k direction. Whether k is a forward or backward step will depend on KST and
KEND (i.e., if KST > KEND then backward stepping will occur). Similarly, IKPLANE=.true. indicates that
the adaption plane contains the (i,k) directions and that j is the plane-stepping direction. Finally,
JKPLANE=.true. refers to the plane containing the points (j,k) and i is the plane-stepping direction.

IMPORT For multiple grids only. An input parameter list containing IMPORT=.true. must
immediately follow a parameter set containing EXPORT=.true. The IMPORT list describes the destination
(i.e., the receiving plane) of the plane of data defined in the EXPORT=.true. input-parameter set. The use
of MGPLS is irnportant for the subsequent adaption of the import grid.

INDQ This parameter indicates which of eight possible flow-field variable(s) will drive the
redistribution of grid points. From the standard PLOT3D format, five options are available:

1 --->density p

2 -4 x-momentum, pu

3 -4 y-mornentum, pv
4 -9 z-momentum, pw

5 -4 stagnation energy, e

Three more options are available by setting INDQ=6, 7, or 8

22

6 _ pressure,p
7 --_ Mach number, M

8 --_ temperature ratio, T

Pressure, Mach number, and temperature ratio are computed using the ideal gas relationship and
assumes the Q file contains the standard variables. (The code actually assigns pressure to NDIM+I, Mach

number to NDIM+2, and temperature to NDIM+3, so if the user has changed the value of NDIM to
accommodate extra flow-field variables, INDQ must reflect

available for 2-D datasets. The user will normally choose to
represents the flow features. However, if different variables
advantageous to combine them to bring out all the features on
and input values for IQ.

this change.) Note that INDQ=4 is not
adapt to the flow-field variable that most
demonstrate different features, it may be
the adapted grid. In this case, set INDQ=0

INTER indicates whether to use a linear (INTER=2), a quadratic Lagrange polynomial (INTER=3),
or a cubic spline (INTER=4) scheme for interpolations. Interpolation is used throughout the code; for
example, the q values in the output function file are interpolated at the new adapted grid points. Linear

interpolation will usually provide the appropriate result.

IQ is an array of eight (or NDIM+3) integer values that are used only when INDQ=0. They allow
the user to modify the adaption variable to a combination of variables. The order of IQ is consistent with
the order of the flow-field variables in Q. The value of an index is the proportion that the corresponding
variable will contribute to the final adaption variable. For example, IQ(1)=I,IQ(7)=I [i.e.,

(I,0,0,0,0,0,1,0)] will produce an adaptive function of 1(39 om+--) and IQ(1)=I, IQ(3)=l, IQ(6)=3 will
2 3s _s

produce 1_0I_+ l_O_v + _Op. Obviously, IQ=(I,0,0,0,0,0,0,0) is the same as INDQ = 1.
50s 5 Os 50s

IST, IEND contain the indices defining the first and last boundary lines of the adaptive domain in
the i direction. Similarly, JST, JEND define the domain in the j direction and KST, KEND define the
domain in the k direction. These variables define the limits of the adaption domain and must lie within the

input grid boundaries defined for the physical domain, i.e.,

1 < IST,IEND < IMAX; !< JST,JEND < JMAX; and 1 < KST,KEND < KMAX

Forward and backward stepping are also controlled by these parameters. If plane stepping is in the k

direction, setting KST > KEND will produce backward stepping. Similarly, if stepping within the plane is in
the j direction, setting JST > JEND will produce backward stepping. The reversing of the data is handled
internally and is imperceptible to the user. Reversing either of the stepping directions will completely
change the resulting grid, since the redistribution along the initial line and plane will be different, as will the
connecting torsion springs. Reversing the order of the adaption direction (i.e., i in the default case) should
have no effect on the solution, since the solution along a line is independent of the order of points.
However, it can be used to redefine start and end points on a line if necessary, and for meshes that contain
very large and very small Ass, numerical accuracy may be influenced by this adaption direction.

ISTEP, JSTEP, KSTEP These are used in conjunction with the PLANE parameters described
above and define the marching and adaption directions within the defined plane. Only one of these three

parameters should be input and set to .true., and the code will assign .false. to the other two. If
lJPLANE=.true., then only ISTEP or JSTEP can be true (KSTEP must be false). If ISYEP=.true., stepping
occurs in the i direction and thus the adaption direction will bej. Points will be adapted along each constant
i line and stepping will occur to the next i line, forward or backward, depending on IST and IEND. If
JKPLANE=.true., only JSTEP or KSTEP can be true and similarly, for IKPLANE=.true., only ISTEP or
KSTEP=.true. will have any meaning. The code puts out an error message if these inputs are inconsistent.

IS, IE, JS, JE, KS, KE These parameters are used only for an export or import transfer process in

a multiple-grid file. These variables define the range of the transfer domain within the plane, MPLANE.
The PLANE parameter (e.g., IJPLANE) defines which coordinate plane is being transferred. As an
example, if IKPLANE=.true., then IS, IE, KS, and KE are used to define the domain within the transfer
plane. If they are omitted, it is assumed that the entire plane is being transferred.

LNSING In some 3-D grid types, planes emanate from a common grid line. If the chosen set of
adaption planes includes this COIIIIIIOIIline, then this line should be adapted only on the first plane and not

23

on subsequentplanes.This adaptedline is thenplacedin the first line of all planes.Althoughthe input
optionis LNSING=n,wheren is the line number, it is likely that n=l.

LSTADD, LENDADD These are input only if ADD¢0 and if only a portion of the grid is to be

expanded. If they are not input and ADDs0, the entire adaptioq domain (not physical domain) is assumed.
If ADD=0, their values are ignored.

LSTSUB, LENDSUB These parameters are input only if SUB¢:0; they define the limits in which

points are to be removed. If they are not input, then the entire adaption domain is assumed.

MARCH This parameter refers to stepping within the plane. If the last line to be adapted (J_,,a) is

within tile physical grid boundary (i.e., Jend < J,,,,,,), a sharp discontinuity will occur between the last adapted

line, J_,,a, and the nonadapted line, j_,,j+_. Setting MARCH=.true. causes the remaining lines within the

plane (i.e., Je,,a+t--->J.......) to be realigned so that they are proportional to the last adapted line. This

realignment will be performed for every plane.

MARCHPL This parameter refers to the plane-stepping direction, and can be used independently

or in conjunction with MARCH. If the last adaption plane is within the physical boundary (i.e., k_,d < k,,_._),

each line in each subsequent plane will be proportioned with respect to the adapted lines in the k_,,a plane.

MGI, MG2 When NEDGE is nonzero, an override mesh spacing is computed at the requested
boundaries (either first, last, or both). This edge-point spacing, which is not a function of the adaption but

of the initial grid, is merged into the three adjacent points to produce a smooth transition. The default
value of MG1 (for i,,) and MG2 (for i,.,,a) is zero when NEDGE=0, but four when NEDGE is requested. The
user has the option of overriding this value, setting it to any other integer value. This can be used when
adapting a boundary layer; when either MG is increased, the dense edge spacing is maintained over a larger
region. For example, MGI=I 0 would merge the edge spacing into the next nine cells.

MGPLS This input variable is analogous to MGSTEPS described below, but applies to planes. If
the first adaption plane (k_,) is internal to the physical domain, MGPLS=n permits the user to gradually

bring in the effect of the adaption parameters to produce a smooth transition across the start plane. No
adaption will take place on the first plane (k_t), and after n planes, full adaption occurs with the adaption

parameters C_*,_.*, etc., equaling their input value. This is an especially important feature for grids that

have an initial distribution on the wall boundary that defines a physical shape and cannot be changed. It is

also useful for retaining matching multiple-grid boundaries (see IMPORT).

MGRID This parameter is only used for multiple-grid files and indicates which grid to adapt. Do
not use MGRID=I for a single grid: setting MGRID to nonzero automatically implies a multiple-grid file.

MGSTEPS (m_) provides continuity when the first adaption line on each plane is internal to the

physical boundary. Inputting MGSTEPS=n tells the code to start with no adaption on the initial line (i.e.,
retain the original distribution on the j_, line) and to linearly increase the adaption effect until, after n

lines, fi_ll adaption occurs. At this point, C,, X, etc., will coincide with their input values. If MGSTEPS=I,

no adaption will be performed on the first line, but full adaption will occur on the second line. Figure 9

shows an example with m_ = 5, and section 1.4.1 describes the parameter in detail.

MVBOUND This is the input parameter that invokes the outer boundary movement. There are

three options:

(1) MVBOUND=±p, where p is a percentage of the input line length. For example,
MVBOUND=-10. will create a grid where s........along each line is 10% smaller than the initial grid.

(2) MVBOUND=999. will move the outer boundary based on the shock location s_h,,ck of the

specified variable, INDQ. The code will look for a sudden change in gradient of the flow variable and add a
given distance to this shock location tO create a new outer bot, ndary.

(3) MVBOUND>!000. will allow the boundary to parallel a given contour value found in the Q file

(defined by INDQ). Tile contour value is MVBOUND-1000.

24

MPLANE Usedonly for multiplegridsduringan importor exportprocess.MPLANE isan integer
definingtile transferplane.The PLANEparameteris used(e.g.,IJPLANE=.t.)to indicatethe coordinate
directionof MPLANE.

NEDGEisa flag that requestsanoverrideon the computedside-edgeboundaryspacing.Sideedges
occurat i_, and ie,J and frequently need special handling. If there are no flow gradients near the edge of the

domain, the standard adaption algorithm will pull points away from the edge. This may not be a
satisfactory result, as, for example, when the side edge is internal to the physical grid boundary.
Figure 10(a) shows a side-edge adaption with NEDGE=0. The flow-field gradients are concentrated in the

center of the grid, and the first adaption point (i=4) has been pulled far from the boundary line at i,_,= 3. It

is clear that it is preferable for the adapted side-edge spacing to be continuous with the juxtaposed spacing
in the external region. Even if the two boundaries coincide (i.e., i_ = l), the user may prefer a differeqt

spacing than that computed by the adaption algorithm. In either case, NEDGE can be set and the code will
try to improve the side-edge spacing. The computed mesh-size override is merged into the next four points,
but this number can be changed by MGI and MG2. The result of setting NEDGE=I is shown in Fig. 10(b).
Depending on the case, both or only one of the side spacings may need improving. NEDGE=i requests both
edges, NEDGE=2 requests start edge only, and NEDGE=3 requests end edge only.

NFILT is a "filtering" variable that defines the number of passes used to smooth the gradient of the
input q data and the computed tension parameter, co. The default value of two will generally suffice, but if
the flow-field variables are discontinuous, it may be helpful to increase the value of NFILT. An increase in

NFILT can also be used to expand or spread out a very sharp flow feature.

NOUP This variable is used to change the grid (e.g., ADD, SUB, MVBOUND, RECLUST) without

performing an adaption. NOUP stands for NOUPdate.

NOQ If no q file is available, SAGE can still be used to smooth the grid: perhaps to equal spacing
or to the geometry function, or to recluster, with or without moving the outer boundary. If NOQ = .true.,
no file will be read on unit 8, and instead a constant flow field will be generated internally and there will be
no interpolated solution file. This is quite different from QFUN = .false. where the q variables are not used,
but are interpolated onto the new grid and output.

NOSESM This variable was added to remove a problem caused by a special grid structure that uses

a singular line at the nose. Since the smoothing parameters (NSM, NSMI) fix the first and last points, s

at tile nose will remain fixed. NOSESM will change the nose s,,,,,, to give a smoother appearance. NOSESM

is the number of adjacent points used to smooth s,,,_,_over the nose region. Typically the value should be 1,

"_ or3

NSM, NSMI NSM and NSMI use the same filtering option described elsewhere (see NFILT and
the FILTER subroutine). Since the outer edge of a shock may not be smooth (due to initial calculations
and/or a coarse mesh) these two parameters will help smooth the new boundary, and though tile default
value is 10 in both cases, numbers up to 100 may be appropriate. NSM is used to smooth the i=imax for all

j in the IJPLANE, whereas NSMI smooths the cross plane (i=imax for all k in the IKPLANE).
Occasionally this smoothing parameter overemphasizes an irregularity in the outer surface and should be set
to zero if this occurs (see Fig. 35 in Section 3).

ORTHS, ORTHE The code assumes that orthogonality to tile marching boundaries is desirable.
This may not be the case, as, for example, in outgoing flow where the shape of tile outer boundary is
arbitrary. Setting ORTHS(I) = .false. will turn off orthogonality from the first to second adaption lines, and
ORTHE(1) = .false. performs the same function when approaching the end adaption line. ORTHS(2) and
ORTHE(2) will similarly affect the plane boundaries.

PLSING This is a parameter unique to 3-D grid adaption. It stands for plane singularity, and

implies that a plane n is actually a single line, but is stored as a set of identical lines. The code will not be
able to compute normals and will certainly "blow up" unless informed of this condition. It is only relevant
when the adaption plane direction coincides with this collapsed plane. Do not use it when adapting in other

plane directions.

QFUN This parameter permits the user to adapt to the geometry function only. When QFUN =

.false. and GEOM = .true. are input, the coefficient of the flow-field gradient (C,_) is set to zero for all grid

25

lines(seesection1.5).In this case, the geometry function is computed throughout the grid and drives the
adaption for all grid lines.

RDSMAX, RDSMIN control the density of the redistributed points and are tile maximum and

minimum allowable grid spacings. They are input as proportioned values and are changed to physical

variables internally, i.e., ASMAx × Sm,,x/(n i -- l) and ASMI N × S,n,,x/(n i -- !), where n, is a constant equal to the

total number of points along the adapted line, and s,,_ is the length of the current adaption line. This

implies that RDSMAX>I.0 and RDSMIN<I.0. (If both are set to 1.0, a uniform grid will result.) As an
example, RDSMIN = 0.5 will prevent a converged As from being less than haft the average step size. (Since
many factors influence tile distribution of grid points, this control is not absolute.) Note that since the
adaption along the first line is not influenced by the torsion parameters, this initial line will present a
clearer picture of the effect of RDSMAX and RDSM1N.

RECLUST This parameter is used to recluster the grid points, with or without boundary

movement and is quite different from adaption. If outer boundary movement is requested
(MVBOUND¢: 0), the default of RECLUST= 0 specifies that the new spacing on tile line is proportional
to the original spacing. RECLUST= ! will invoke the Vinokur algorithm and provide spacing based on an
inverse hyperbolic fimction, if no outer boundary movement is desired (MVBOUND= 0), but reclustering
based on tile Vinokur aigorithm is required (RECLUST= n, where 3 > n), then n points will be reclustered.

This is useful for limiting reclustering to the boundary layer or for entire grid reclustering. Note that this
grid redistribution option is also useful for removing zero cells (i.e., two grid points at the same location)
from an initial input grid.

REMOVE It is possible that an initial grid has unnecessary grid points in the outer region. Once an
initial solution has been obtained, the user can see that these points are wasted. REMOVE=n will remove n

points from the end of all adaption lines. NOUP should be set to true if only removing points is required.
To remove points from the inner region, reverse IST and lEND. This will not change the adaption but will
fool the remove operation. Remember, REMOVE deletes the boundary points, SUB retains the outmost
one.

SAVE This is useful when more than one adaption pass is made in the same program run, for

example, an adaption stepping in thej direction followed by one stepping in the i direction. The output grid
and function files are large, and setting SAVE=.false. on a set of SNAMEL will suppress the output for that
particular adaption. If SAVE=.true. (default), each subsequent output set of xyz.out and q.out files will be
assigned to different unit numbers. As stated in the execution section, the first output set is assigned to units
10 and 11. The second output set will therefore be units 12 and 13, and so on. Note: SAVE=.false. cannot
be used for multiple grids.

SUB When SUB=n (¢0), points are removed from the adaption line. As an example, ifn=l, every

other point is deleted. If n=2, two consecutive points are deleted between the points retained. Note that tile
number of stepping lines remains constant: poiqts are only removed from the adaption line. To remove
points from both directions, two passes are required. See LSTSUB, LENDSUB if only a selected range of
deleted points is to be deleted.

TWOD If the input grid and fimction files are stored as 2-D PLOT3D files, this parameter must
be set to .true. Tile code will assume that IJPLANE is tile adaption p|ane and JSTEP the stepping direction.

Tile user must specify ISTEP=.true. if required. Tile next Section discusses tile adaption of 2-D problems.

2.4 Alternative Grid Types

2.4.1 Two-dimensional adaption. Tile SAGE code can accommodate 2-D datasets, and will

adapt the single plane in the same manner as in the original 2-D SAGE code (Davies and Venkatapathy,
1989). When tile input parameter TWOD is set to .true., the code will read tile grid (assuming (x,)_)) and
function files as 2-D files. These datasets will then be internally converted to a 3-D format; the number of

k planes will be set equal to one, creating a constant z coordinate, and the 4th q function will be shifted to
index 5. (Note that indices INDQ and IQ retain their 3-D relationship.) Because of this reorganization, no

special handling of 2-D datasets is required within the body of tile code. Datasets are reconverted to 2-D
form before output. To accommodate larger dimensions, the parameter statement may be changed at tile

beginning of each routine. Since 2-D datasets require only KD=I, ID, JD, and IMX may be significantly

26

increased.However,this changeis not made automatically and the user must change the parameter

statements if necessary.

2.4.2 Finite-volume grids. The solution file associated with finite-volume applications contains

q values evaluated at the cell center. Therefore the IMAX, JMAX, and KMAX values on the header record
are one less than the values given in the grid file. If SAGE finds that the size records disagree and that the

finite volume option is off, an error message is sent to the user.
Care must be taken with the boundary (or ghost) cells. SAGE interpolates q onto the internal grid

points and then sets all boundary values (in the physical domain) equal to the adjacent interior value. After
adaption, flow values are interpolated back to the cell center. If all planes are not adapted, the q values in
the final adapted plane will be interpolated as if they are on a 2-D surface since there will be a discontinuity
between the adapted and non-adapted grid points. The boundary values of the physical domain are again set
equal to the adjacent values, regardless of whether the entire physical domain has been adapted. It is
therefore very important for the user to check all the boundary cells in each coordinate direction.

Related to the handling of the boundary cells, SAGE will only adapt a finite-volume grid if it is a
single surface (whether defined in 2-D or 3-D) or is a 3-D grid with four or more planes.

2.4.3 Multiple grids. The multiple-grid format is a single file containing a collection of

separated grids. Preceding the grids are two header records, one defining the number of grids and the other
the size of each grid. The associated q file is similarly defined.

Some complex multiple grids utilize tile blanking feature available in PLOT3D. Currently, this
version of the SAGE code does not handle these blanked regions (see Section 5). Also, if overlapping
regions are adapted in separate grids, it is the user's responsibility to interpolate the results. However,
matching zonal planes can be handled with the plane-transfer feature described below.

2.4.3.1 File handling. Since each grid is stored sequentially within a multiple-grid file,
SAGE reads and copies all grids (and their associated solutions) to the appropriate output files until the
requested grid (MGRID=n) has been read. This grid is now adapted (or a plane transferred) and written,
along with the interpolated flow solution, into the correct sequence in the output files. Finally, any grids
following the adapted grid are also read and copied to the output files. Subsequent adaption or export/import
passes will use these output files as input files. If several passes occur in the same computer run, several sets
of large files could be created and the user is rerninded to delete unneeded files. The SAVE parameter cannot
be used since the code needs to rewind the files for multiple passes.

An additional set of files will be created if any grid has changed size (e.g., tile ADD or SUB option

has been used). Grid sizes are stored in the header record that has already been written to the output file
before adaption took place. This header record must be amended to reflect the new grid size. The final
output files are therefore read in as input files, tile header record is corrected, and yet another set of output
files is created. An output message keeps the user informed of the unit numbers for the final set of output
files.

2.4.3.2 Data transfer using EXPORT and IMPORT. Section 1.7 explains the need for
data transfer between grids. A set of input parameters is available that controls the transfer of data from
one domain within a specified plane of a specified grid to a matching domain within another grid. The same
namelist format is used that controls the normal adaption procedure in SAGE, but two sets are required in
the user-input file: the first describes the 'export' plane and the second describes the 'import' plane. Here,
the term 'export' means a domain (i.e., a surface, plane, or sub-plane) whose data will be transferred. The
domain receiving this data is the 'import' domain. A transfer domain is defined by

I. the transfer code, either export=.t, or import=.t.
2. tile grid number, mgrid
3. the plane direction, (ijplane, ikplane,jkplane)
4. the plane number, mplane (this will often be the first or last plane)
5. tile range of points describing tile domain (i.e., the start and end points in two directions)
within the plane

Notes: (a) For 2-D datasets only one line in a plane is transferred and ijplane =.t. and mplane =1
are defaulted by the code. The transfer domain is described by is, ie, js, je and one of these directions must
have equal start and end points. If the 'export' card is tile first input set, remember to include twod=.t.

27

(b) Multiple transfers can be handled in the same run of the code as well as a combination of

adaptions and transfers. See the examples section for clarification.

2.4.4 Blanked grids. SAGEv2B is the only version of SAGE that recognizes the blanking option
that is found in some PLOT3D grid files as an additional variable, called IBL. Section 5 of this document

describes the blanking option in detail. If IBL is defined in the PLOT3D input grid file, SAGEv3 can be used
but the blanking will be ignored and the output grid file will not contain IBL.

2.5 Output Message File

The sage.out file is written to unit 6, the normal default for the output screen. It contains messages
that help explain what has happened during program execution. At tile end of each adaption, "ADAPTION
n COMPLETE" indicates that the program was able to run to completion and that xy.out and q.out files
have been created. The message "OUTPUT FILES ON UNITS n t AND nz" informs the user that the

output grid and Q files are named fort. n_ and fort. n 2.

The following are other messages that may be seen (given in alphabetical order) along with a short

description of their meaning.

ADD OPTION EXCEEDS DIMENSION (Critical)

Self-explanatory. Increase array dimensions.

CANNOT USE INDQ > NUMBER OF Q IN SOLUTION FILE (Critical)
This message comes from subroutine SHOCKLE. Only variables within the Q file can be used to detect

a shock, not internally computed values.

FINITE VOLUME METHOD NEEDS I OR 4+ PLANES (Critical)

A single plane is treated like a 2-D surface: i.e., 4 points are used for cell-centering. Four planes are
needed for the finite volume method in 3-D.

GRID HAS IDENTICAL POINTS AT i AND i+l ON LINEj AND PLANE k:
USE RECLUST OPTION TO TRY TO REMOVE (Critical)

Computation of body normals is impossible in cells of zero size. Use the reclust option to remove
them, and perform the adaption again.

GRID SIZE TOO LARGE FOR THIS ADAPTION, MINIMUM DIMENSIONS REQUIRED: ID=n I,

JI)=nz, KD=n 3 (Critical)

Increase array dimensions to size suggested. Note that these values are appropriate for this set of
input-control parameters only and may need to be changed for other adaptions of the same grid. For
multiple grids, this message may be preceded by additional information.

IMPORT CARD EXPECTED, NOT FOUND (Critical)
The previous card in the input stream contained export=.t. This must be followed by a set containing

import =. t.

INCONSISTENT PLANE AND STEP (Critical)
A stepping direction has been requested that is not available for the requested plane. For example,

IKPLANE and JSTEP.

INPUT FILE SIZES DO NOT MATCH (Critical)
The grid dimensions on the header records of the grid file and solution file do not match.

IS THIS FINITE VOLUME? IF SO, SET FV=.TRUE. (Critical)

The grid file dimensions are one greater than the solution file. Should this be finite volume?

MAX I TOO LARGE, CHANGE ID TO n_

MAX J TOO LARGE, CHANGE JD TO nz

MAX K TOO LARGE, CHANGE KD TO n._

CHANGE IMX TO n4 (All critical)

These messages occur only for mtlltiple grids. It implies that one or more of the grids in the file is too
large for the dimension statement. It need not be the adaption grid. It is possible that even if this is

28

corrected,asubsequentruncouldindicateaseconddimensionchangeto accommodatedataswappingfor
theadaptiongrid.
NDIM TOO SMALL FOR2-DTO 3-DTRANSFORMATION(Critical)

IncreaseNDIM dimension(e.g.,from 4 to 5) so internaltransformationcanbemade.
NOCONVERGENCEALONGINITIAL LINE, ERRMIN=at (Warning)

The initial line isa I-D adaptiononly. This is rarely a catastrophicerror, especiallyif al is small;
however, the adaption may not be completely satisfactory. The only control parameters that affect the
initial line are RDSMAX, RDSMIN, and NEDGE.

NO CONVERGENCE ON LINEj AND PLANE k, ERR=a 2 (Warning)

This message is only a warning and adaption continues. Even many of these messages may of be no
concern as long as a2 is small. If adaption is successfully completed, check the new mesh to see if it is
acceptable.

NO OUTPUT FILES (Warning)
For whatever reason, no files have been output. (Is save=.f on all passes? Does $namel start in column

27)

NO POINTS ADDED (Warning)
Inconsistency in parameters requesting adding points.

NO VALUE FOUND FOR QVAL ALONG INITIAL LINE (Critical)
Outer boundary movement has been requested along a constant contour line. This value has not been

found on the first grid line.

NUMBER OF POINTS INCREASED FROM nt TO n 2 (Informational)

If the ADD option has been input, this message gives the new grid dimensions.

NUMBER OF POINTS DECREASED FROM n t TO n2 (Informational)

If the SUB option has been input, this message gives the new grid dilnensions.

OUTPUT FILES ON UNITS n t AND n2 (Informational)

The final grid file will be found on unit n_ and the final Q file is written onto unit n2. Note that
intermediary files may also have been created. For the simplest single-grid, single-adaption case, default is
fort. 10 and fort. 11.

PLANE tit, GRID n2 COPIED TO PLANE nj, GRID n 4 (Informational)

Indicates the successful transfer of a surface from one grid to another in a multiple grid file.

POINT(S) REMOVED, NUMBER OF POINTS NOW n (Informational)
REMOVE option has been invoked.

s IS NON MONOTONIC ON LINEj AND PLANE k (Critical)
This message will terminate the program. It indicates that the values of s, at the completion of the

iteration on line j are not monotonically increasing, thus implying crossover of points. Since this is
unacceptable, the program outputs the data. It is then possible to view the plots and re-evaluate the control

parameters.

SOLUTION FILE IS F-V: CHECK YOUR BOUNDARY CELLS! (Informational)

Data stored into the ghost or boundary cells may be incorrect.

SUB OPTION PRODUCES TOO FEW POINTS FOR ADAPTION (Informational)

Fewer than 10 points remain in the adaption direction.

TOO FEW POINTS FOR ADAPTION WITH NEDGE=I (Critical)

There are fewer than 10 points along the adaption line. This is not appropriate, especially if NEDGE
is set.

TOO MANY MULTIGRIDS FOR NM DIMENSION (Critical)
The parameter statement at the beginning of each subroutine contains NM, the number of zones in

a multigrid file. The default value is I0.

29

WARNING:DIRECTIONAL SIGNS INDICATE COORDINATE SYSTEM MAYNOT BE RIGHT-

HANDED (Critical or informational)
The calculation of body normals assumes a right-handed coordinate system. In most cases, this

message indicates the grid should be re-ordered.

WARNING: ZERO CELL AT (i,j,k), 'SAGE WILL TRY TO CORRECT!'
Routines SHOCKLE and BLCLUST detect zero cells during the reclustering process. This message is

passed on to the user as a warning. Note that the (i,j,k) are in the transformed coordinate system. The code
will average two surrounding cells.

2.6 Outline of Each Subroutine

The MAIN routine is a driver routine whose task is to call the relevant subroutines. A loop (using

NADS) is set to provide for multiple adaption passes. The frst routine to be called is INITIAL, which reads

and organizes the data. A loop is then set up for the adaption of each plane, and the constant planar
variables are computed. Finally, a loop is set up for each line in the plane in which all the coefficients of
the adaption equation are computed, followed by the solution process. When each pass is complete, the
OUTPUT routine is called.

Along with the AIAhV routine, the SAGE code consists of the following subroutines, listed here (as
they are in the source code listing) in alphabetical order. Arguments shown in boldface are computed within
the subroutine.

ADDPTS(IER)

This routine is called by INITIAL if ADD:/: 0. Extra points (depending on ADD) are inserted between
every grid poi,lt within the range LSTADD to LENDADD, by linear interpolation. The error flag is set if
the additional points exceed the defined dimensions.

ADD V(C O SX 1,COSY 1,C OSZ 1,A 1,COSX2,COSY2,COSZ2,A2,COSX,COSY,C OSZ)

This is a utility routine. The direction cosines of two unit vectors (COSX1,COSY1,COSZ1) .and
(COSX2,COSY2,COSZ2) are input arguments. The routine computes the direction cosines
(COSX,COSY,COSZ) of the unit vector that represents the sum of the input vectors, proportioned by the
coefficients A1 and A2.

BLCL UST

This routine is called when the user requests a reclustering of points using the Vinokur algorithm but with no

outer boundary movement (RECLUST=n>3). Frequently this is used to transform an inviscid grid into a
viscous grid. New values of s_ are computed, and the (x,y,z) and Q values are interpolated. If only a subset of

the domain is reclustered (n<imax-1) the mesh spacing at the boundary is defined by the original spacing

and not the input value of DSE.

BLOCKO,K)

Initially, all grid coordinates are stored in the input X, Y, and Z arrays. In this routine, a block of data
around the currentj line is stored in arrays XJ, YJ, ZJ to prevent the original grid from being overwritten
during interim calculations. Only the converged adaption line is replaced into the original grid arrays. The
XJ, YJ, and ZJ are made up of all i points on the currentj line and all i points on the j-1 andj+l lines in

the k-l, k and k+l planes, giving (n,,3,3) dimensioned arrays. At boundaries, nonexistent data points are

filled with 999. Most calculations within the code, but especially the computation of the normal vectors,

are performed on this block.

CL UST2(X,D X O,D X [,JMAX)

This computes the new s_ (X) based on the algorithm defined by Vinokur (1983). Also includes ASINHF

and ASINF funclion routines.

CROSSV(XT,YT,ZT,XT 1,YT 1,ZT 1,DST,COSV,AAP,DAP,ICROSS,J)

Appendix Ii, section 1.11.2, contains the analysis used to develop this routine. COSV is the array
containing the direction cosines of tile vector t-;.', defined in that appendix. (XT,YT,ZT) are the
coordinates of aj line, (XTI,YTI,ZTI) are the coordinates of a juxtaposed line, and DST is As alongj. As
an example, lhis routine is used to compute s-s' (i.e., AA') and DA', the distance bet_een s' and the

!
!

3O

correspondingnodeat (i,j-l,k), as shown in Fig. 4. 1CROSS is the array containing 1 and indicates the

intersecting segment for each COSV.

CSPLhV(NT,S,V,SPF)

The cubic spline coefficients, SPF, are computed for NT points. S is the streamwise location of the
function V. These coefficients are used by the routine SPEVAL if GEOM=.tme. or INTER=4.

DETERM(A I ,B I ,C 1,A2,B2,C2,A3,B3,C3,DET)

This routine computes the determinant of the three vectors whose direction cosines are given in the

argument list.

DLENG(JL,K)

When NEDGE is set, the tension parameter m is amended at the edges (i.e., at IST and lEND) to improve

edge-boundary spacing. This routine computes DLENGS and DLENGE, which are used in the edge co

calculation (by the routine WTEDGE). The values of DLENGS and DLENGE depend on whether tile grid is
defined outside of the adaption domain. JL indicates whichj line is needed.

EDGEMG(V AR)

This is a utility routine. For various reasons, the values of some variables at the IST and/or IEND edges are
overridden. To blend these different values into the calculations, this routine will merge the new values

(given at the two boundaries of VAR) into the next three (or MG1, MG2) grid locations of VAR.

FBAR(J,K)

This routine is called once for everyj line. The As and the gradients Oq/8s are computed at the input grid

points and stored in FQ. If duplicate points are found (i.e., 3a A& =0) a message is printed and the

program terminates. If GEOM=.true., the wail gradients Og/8s are also computed by calling WALLS, and

stored in FG. In addition, the coefficient Cg is computed and FG is added to FQ and stored in F. The routine

INTF is called to interpolate the value of F at these new grid points and to compute the normalized form of
F, i.e., FB. The routine GETB is called to find the value of B for thisj line. For lines other than the first,
initial guesses for the s distribution are extrapolated from the converged s, along the j-1 line. Since these

do not correspond to the input points, new local values of x, y, and z are interpolated by calling PROPS.

FIL TE R(V A R,N IPTS,NF|LT)

This routine smoothes the parameter contained in VAR by adding a second derivative term,

vi=.75v,+.i25(vi+l-v__j). NFILT is the number of smoothing passes (default=2). The pararneters

smoothed are f = f(Oq/Os) and co,; they are returned to the calling routine via VAR.

FVORG(IND)

If IND=I, this routine interpolates the cell-centered q values onto the grid points to enable adaption to
take place in the normal manner. Values at the first and second boundary points are set equal. If IND=2, the
q values are re-interpolated to the new cell centers.

GETB(J,K)

This routine computes the value of B used to evaluate m. B is found by an iterative process and is said to

converge when the minimum requested As equals tim computed minimum As. The analysis for this routine

is given in Appendix i.

GETWT

This routine computes co,, the modifier of co that is applied when any computed As lies outside the

requested range of RDSMAX and RDSM1N.

HEADIO(IC,IER)

This routine reads (IC=I) and writes (IC=2) the header records for multiple-grid files. It also tests to see if
the grid dimensions are too large for the programmed dimensions and whether the NM dimension

parameter is greater than or equal to the number of zones.

INITL4 L(NOMORE,MTCH)

This routine sets all the default values and reads the input parameter file. If EXPORT is true for a multiple-

grid file, MTCtt is set to .true. and control is handed to the ,_4TCH routine. In all other cases, the

31

appropriategrid and function file input routinesare called(either READAT or READMULT). When
necessary, the grid points and corresponding flow-field data are rearranged to correspond to the data
organization assumed by the analysis. This routine also controls the addition or removal of points and
initiates any boundary movement. If no more adaptions are requested, NOMORE is set and control is
returned to the main routine.

INTF(F I ,F2,S1,SMID,NPTS)
This routine interpolates to find F2 (new F) at the new s, (S1), based on the input values of F1 (current F)

and tile midpoints (SMID) of the input s array. The interpolation routine chosen is based on INTER.

INTXTZQ(J,K,J1,K I ,SS,SN. Q J)

This routine interpolates for X, Y, Z, and Q at the new SN, given the corresponding values at SS. The new
(x,y,z) coordinates are stored in the block of data defined by X J, Y J, and ZJ. The q data are stored in QJ.
The appropriate interpolation routine is called based on INTER.

LAGCOF(SNEW, SARR,NPTS,M,PI,P2,P3)

This routine computes the Lagrange coefficients Pl, P2, and P3 for a point SNEW, with respect to the

input s array, SARR. These are used by the calling routine to interpolate for the variable at SNEW. First or
second order is available; the choice depends on INTER. M is the associated index for Pl and will reflect a
forward or backward interpolation, depending on the location of SNEW within the interval.

LINE1

This routine solves for the adapted values of s i along the initial line j = J.,t on the initial plane k.,. Since

both torsion terms are zero on this line, the As_ are computed from the I-D approach.

MA RC HJ(K)

If the final adapted line within plane k is internal to the physical end-boundary line, this routine will
redistribute the points on the remaining j lines, based on the distribution along the J,,,,a line. The routine is

called for each plane. This action is performed only on request by the user and is not an adaption to the
flow field. However, it will prevent the discontinuity between the last adapted line and the remaining non-

adapted grid lines.

MARCHK

The function of this routine is similar to MARCHJbut it is called on user request if the final adaption plane

kend is internal to the physical end plane k It will redistribute points on all lines on tile remaining planes

to be proportional to the corresponding line on the last adapted plane.

MA TCH(NOMORE,IER)

This routine is called as soon as an 'export' card is read. If necessary, the output files are rewound

(REWND); and then the header records are read (HEADIO). The export grid is read into core (MULTIO) and
the requested plane stored (STOREX). Now, the next set of input parameters is read (which should be an
'import' set). The input files are closed, rewound, and reread up to the import grid (READMULT). The
stored export plane is copied into the import plane (STORIM) and all the files are written to the output
units (WRITMUL 7).

MGWALLS(J)
This routine is called when GEOM=.true. It computes the coefficient of the geometry function, Cg (FGW),

based on tile local aspect ratio.

MUL TIO(IN I ,IN2,1OUT 1,IOUT2)

This routine reads and immediately writes multiple grid files. INI and IN2 give the range of grids to read in

(e.g., if MGRID=3, READMULT_ill initially call kFULTIO with INI=I and IN2=3). IOUT1 and lOUT2
give the range of grids to output (in tile same example, READMULT will set IOUTI=I and IOUT2=2, since
grid 3 will be written after adaption). The hcader records are handled separately in HEADIO.

NOADAPT(J,K)

This routine updates variables and/or places them in appropriate arrays when no adaption is to be

perforlned on the currentj line, but adaption is to be perforlned oil the next line. When stepping to the

32

next line, the codeexpectscertainvariablesto beavailableatj-1. This scenario occurs, for example, in

merging situations (MGSTEPS>0) and for common lines (LNS1NG>0).

NORM(F1,NPTS)

The function F1 is normalized as (FI-FIn,in)/(Fl-Flmi,,). If maximum and minimum values are equal

or nearly equal, the normalized variable is set to O(10-5).

NORMP T(IP ,JP ,KP ,INDP L,P A,P B,PC,SIN G)

This routine finds the vector at the point (IP,JP,KP) normal to the plane defined by INDPL. Although
three direction planes exist through the point, only two are needed by the calling routines: INDPL=I is the
(_,k) plane and INDPL=2 is the (i,j) plane. The analysis to describe this routine is given in Appendix lII.
Four normals are computed and the average is found, with tile direction cosines returned in (PA,PB,PC).
SING is set to 1 if the normal does not exist.

OUTPUT

OUTPUT is called at the conclusion of each adaption set (NADS). Remaining planes are proportioned if

requested by MARCHK, and then the data files are returued to their original order to confornl with tile input
mesh structure. Either WRITMULTor WRITOUT is called to output the grid and flow-field files. This routine
is also called if s becomes non-monotonic (OK=.false.). In this case, the new mesh points that have been

computed are output to help the user choose more appropriate control parameters.

PROPS(J,K)
After a new solution of s_ has been obtained on a line j, the code stores this data in line j-1 and steps to the

next line. This routine proportions the new s, throughout the non-adapted regions of the block of data

defined by XJ,YJ,ZJ. Essentially, this provides a first guess for the currentj line and also produces smoother
planes for the vector normal calculations (see Appendix III).

PURPLE(A 1,A2,A3,B 1,B2,B3,V I,V2,V3,NFL)

A and B are direction cosines of two vectors defining an enclosed plane. This routine takes their cross-

product and normalizes the result to give the direction cosines (V1,V2,V3) of the unit normal to the
enclosed plane. NFL is the direction sign of the normal.

P USHIT(DSN,NSM,NSM 1)
This routine controls the outer boundary movement for allj at each k plane. It is called if MVBOUND:# 0.
It first calls SHOCKLE to find the new s If d w = 999. the original wall spacings are saved for each j. The

location of (x,y,z) at the new s....... are computed, and then the new array of s, is obtained, either as

proportional to the old s, or by calling CLUST2. Finally, all (x,y,z) and q are interpolated at the new &.

REA DA T

This routine reads in tile single grid and function files in PLOT3D binary format. Input datasets may be in
2-D or 3-D form. The size of IMAX, JMAX, and KMAX on tile header record is checked (by SIZING)

before the data is read. IfNOQ is true, the Q array is filled with 1.0.

READMULT(IER)

This is the read routine for multiple-grid files. Since some writing of files also occurs, the output unit
numbers are verified. The header records are read and copied to the output files (HEADIO). Then MULTIO

is called to read the requested grid into core and to write all preceding grid data onto the output files.
Finally, ifNOQ is true, the Q array is filled with 1.0.

REWND

This routine rewinds the output files and opens them as input files.

SETUPJ(J,K)

This routine cornputes the direction cosines of the vectors /_, b, and _' used to evaluate the torsion vector

t'. These vectors are associated with the (i,j) points within the constant k plane.

SETUPK(J,K)

This routine is similar to SETUP J, but the direction cosines of u , b , and e are computed to evaluate the

plane torsion vector, t-*. These vectors are associated with the (i,k) points within the constant./' plane.

33

SHOCKLE(SNMAX,DSN,NSM,NSM I)

This routine is called when the outer boundary is moved, and it computes all the new s,,,,,_ for each (Lk), "

based on shock location or other user request. Smoothing also takes place, based on input NSM and NSM 1.

SINGPLN

When PLSING is set, SINGPLN stores the result of the first adapted line into every line of the same plane.

SIZING(IER)
The parameter statement at the beginning of each subroutine presets the dimensions (ID,JD,KD) of the grid

and q files. This routine compares the input grid dimensions (IMAX,JMAX,KMAX) or
{IM(NGRID),JM(NGRID,KM(NGRID)} to these preset values. If insufficient space has been allocated, the
minimum possible values of ID, JD, and KD are computed for this adaption to proceed. (These values are
not obvious since space must be allocated for data swapping.) IMX, the maximum of ID, JD, and KD is also
evaluated. A message is then sent to the user to recompile SAGE with the suggested dimensions. Finally,
IER is set to 1 to inform the INITL4L routine to terminate the code.

SOL UT(J,K)

By the time SOLUT is called, all variables have been computed that are needed to obtain the new
distribution of s,. The coefficients of s, (see Eq. (8) in the first section of this report) are set up in a

tridiagonal matrix and solved for s,. interpolated values of co, are found at these new values of si and

iterations are performed until _., s_"_- s["-l> is small or too many iterations have been performed. In both

cases, a check is made to see if all the si are monotonic. If so, the program continues; if not, the flag OK is

set to false, causing the program to output the current grid and terminate.

SPEVAL(NT, S,V,SPF ,SI,VI,VPI,VPPI)
This is a cubic spline interpolation routine used when INTER=4 or if GEOM is true. It uses the coefficients
(SPF) computed in CSPLIN. In addition to interpolating for the variable V at SI, the corresponding first
(VPI) and second (VPPI) derivatives are also evaluated.

STOREX

This routine stores the data from the export plane into XP, YP, ZP, and QP.

STORh'vl

The export data stored by STOREX in XP, YP, ZP, and QP are copied to the import plane.

SUBPTS

When SUB = n _0, n points are deleted between each retained mesh point. If LSTSUB and/or LENDSUB

are nonzero, the range of the deletion is restricted. Deletion occurs only in the adaption direction and does
not decrease the number of stepping lines or planes.

S WA PIN V

This routine is called if k,.s > k_,,d. J.,t > Je,,d, or i_ > i<,,d. The order of (i.j,k) in the x, y, and z input matrices is

reorganized to ensure that internal computations have monotonically increasing indices. The flag for the

handedness of the coordinate system is amended accordingly.

SWAPXTZ(RSWAP)
Since the internal computation assumes that j is the stepping direction within the plane and that k is the

stepping direction of planes, this routine is called to interchange X. y, z, and q when the input requests
alternative stepping directions. RSWAP is a flag that states whether this data exchange is at the start of the

computations or is the reverse process required for output. This routine is lengthy due to minimizing
storage requirements.

SWAP2D(IO)

TWOD=.true. indicates that the input datasets are formatted in two dimensions. This routine reorganizes

the 2-D plane to appear in the code as a 3-D surface. Every z is given the value of zero, each Q(4) is moved
to Q(5), and Q(4) is zeroed. IO indicates whether the translation is from 2-D to 3-D, _hich occurs on

input, or from 3-D back to 2-D for output.

34

TORCOF(L,JK,JKST,JKEND,MGNOS,MARCHJK)

TORCOF is called twice in each loop, once with all the arguments representing the k plane passing through
(i,j,k) and once with the arguments representing thej plane also passing through (i,j,k). This routine amends
the coefficfents (C,, k) etc. of the torsion vectors t' and i* based on the current line location. For example,

Ct is decreased when leaving or approaching a boundary to emphasize orthogonality.

TORSION(J,K)

This routine first chooses the appropriate /_ and adds to h to obtain h. The torsion vector t' is then

obtained by adding t_ and _. The between-plane torsion vector t'* is computed in a similar manner. The
routine CROSSV is then called to find the intersection of the torsion vectors with the j line from which

g * • *

both si and si can now be evaluated. Finally, a check is made to ensure that si and si monotonically

increase. If they do not, the code attempts a correction, but any major problems will cause the code to
terminate in the SOLUT routine.

UNITV(X I,Y1 ,Z I ,X2,Y2,Z2,DIRCX,DIRCY,DIRCZ)

This is a utility routine that finds the unit vector from (XI,Y1,Z1) to (X2,Y2,Z2). DIRCX, DIRCY, and
DIRCZ are the direction cosines of this vector.

UPDA TE(J,K)

This is the last routine called in the iteration loop for the current j. Newly adapted values of si have been

found. The values of x, y, z, and q at this new distribution are interpolated (1NTXYZQ) and replaced into the
matrices containing the physical mesh.

VMERG E(DIR V,LST,L END)

This routine performs the same function as EDGEMG, but with a vector quantity (DIRV) in place of a
scalar value. LST and LEND indicate which value of DIRV must be merged into the next three (or MG1,
MG2) points.

WALLS(JW,K)

Along linej (JW), the geometry gradient, as defined by the radius of curvature, is computed for each grid
segment. Normally,j will equal j_, or Je,,d" However, for cases when geometry is the only adaption variable

(QFUN=.false.), WALLS is called for everyj line.

WRITMUL T

This is the write routine for multiple-grid files. The current adapted grid is now output and any subsequent
grids are read and written by calling MULTIO. If the grid size has changed, the header record is updated; the
output files are closed and opened as input files; the header record is corrected and all data are copied to the
new output files.

WRITOUT

This routine writes the single-grid 2-D or 3-D adapted grid and interpolated function file on traits NITG and
NITQ. if the finite-volume option is set, IMAX, JMAX, and KMAX are one less on the q file.

WTEDGE(J,K)

This routine is called by A_4IN when NEDGE modification is requested. The edge values of the tension
parameter at the nextj line are a function of the average o_As along the just-completed adapted line. This
routine calls DLENG to obtain the appropriate value of edge As on the next line, computes the average
0_As on this line, and evaluates WDS and WDE to be used in routines LINE1 and SOLUT.

2.7 Nomenclature

The following is a list of variables used in the SAGE analysis. When applicable, the corresponding
FORTRAN name used in the code is shown in boldface.

A,B

A,

q,

constants used to compute co, (A,B)

aspect ratio, used to control Cu, FGASP

coefficient off(g) in co calculation, FGW

35

c,,
q

F,,.(b., ,b> , b.,)

C,,C* t m

d; (d_, d._.,,dz,)

; (e.,,%.,, ez_)

e

f
f.,i.,f,

7
g
i

imax,jmax,
kmax

i,.,, J._t,k_t

ie,,a,J_.,I, ke,,d

J
k

K

1

IHg
*

17lg

Il g

I1i

I1m

lZ m

i_; (n.,,,n.,.,,%)

1z

q
R
s

-_,"(S_i, s.,,, szi)

Sma r_

S t

S*

As i

kSMtu. ASMAx

z_S'mi,n As,.,_,:

T

F; ((_,,l>.,t:,)

In

I*
tl

i_; (u.,., u.,., u_,)

coefficient off(q) in 03 calculation, FQW

input proportion coefficient for torsion, CT(1)

input proportion for torsion between planes. CT(2)

orthogonal vector toj line within k plane; direction cosines of b. COSB

orthogonal vector toj line withinj plane, COSBK

modified values of C_, C_', CTM(1), CTM(2)

straightness vector, COSD

average straightness vector within k plane, COSE

average straightness vector withinj plane, from k -2 --_ k - 1, COSEK

gradient ofq (and g if necessary), F
minimum and maximum fused to normalizef FMIN, FMAX

normalized function off, FB

geometry function
subscript indicating the current node in adaption direction. I
total number of points in i, j and k directions of input grid file,
IMAX, JMAX, KMAX
start of adaption domain in i. j and k directions, IST, JST, KST

indices indicating end of adaption domain. 1END, JEND, KEND

subscript of the current stepping line, J
subscript of the current adaption plane, K
torsion-related constant

local subscript relating to node i, L
number of stepping lines before full adaption, MGSTEPS

the plane equivalent of m_, MGPLS

flag for edge control, NEDGE

number of points in the adaption line, NIPTS

merging coefficient for lines f(mu), CNM(1)

merging coefficient for planes f(mg), CNM(2)

orthogonality vector within plane, COSN

orthogonality vector betwecn planes, also stored in COSN
input flow-field variable (p, pu, pv, pw, e), Q

radius of curvature for geometry function, FGS
streamwise length, SS or SN
vector representing s, SSX, SSY, SSZ

maximurn value ofs on line j, SMAX

value of streamwise length used for torsion within planes, SP

value of streamwise length used for torsion between planes, SPP

si - si_t, D S

requested minimum and maximum grid spacing, DSMIN, DSMAX

computed minimum and maximum grid spacing

torsion force

within-plane torsion vector, COST

torsion vector between planes, also COST

proportion of /_ and i7 used to compute /i, TN(I)

proportion of b* and /i* used to compute /_', TN(2)

vector normal to j-1 line in k plane, COSU

- 36

It

x,y, z

0

O3

COt

vector normal toj line on k-1 plane, COSUK

input grid mesh, (X,Y,Z) globally and (XJ, YJ,ZJ) locally
input magnitude of torsion control parameter, CLAM(l)

input magnitude of plane torsion control parameter, CLAM(2)
angle for torsion computation

within-plane torsion-related parameter, TAU

tension spring force, WEIGHT

computed weighting oll co, WT

between-plane torsion-related parameter, TAUPL

2.8 List of Major Variables

This section contains the list of variables (in alphabetical order) used in the SAGE code. Local variables
that contain only intermediary values are not listed. The format is:

Variable name(dimension) /r i/r 2/brief description

where

and

A

AA(IMX)

AAP(IMX)
ACT

ADD
ALPHA

AMACH(IMX)

B

BB(IMX)
BCONV
BJ1

BK1

CC(IMX)

CLAM(2)

CLAMW(2)
CNM(2)
CONV

COSB(IMX,3)

COSBK(IMX,3)

COSD(IMX,3)
COSE(IMX,3)

COSEK(IMX,3)

COST(IMX,3)
COSU(IMX,3)

COSUK(IMX,3)

CT(2)

CTM(2)

DAP(IMX)

DAPPL(IMX)
DET
DLENGE

r I describes what type of variable -- input, local, parameter, or common block name

r 2 lists routine(s) where the variable is initialized.

/COM2/INITIAL/A used to compute co

/Iocal/SOLUT/coefficient of si_ _ in solution matrix

/argument/CROSSV/s- s i or s- si

/local/TORSION/final modified C,

/COMI9/input/if set, add grid points
/COMl2/input/ information only for PLOT3D
/Iocal/FBAR/computed Mach number

/COM2/GETB/B used to compute co

/Iocal/SOLUT/coefficient of s, in solution matrix

/Iocal/GETB/convergence criteria for B iteration
/Iocal/GETB/value of B along j-1 line in the k plane
/COMI5/GETB/value of B alongj line in the k-1 plane

/Iocal/SOLUT/coefficient of s_+_ in solution matrix

/COM 10/input/X and X*, magnitude of torsion terms
/COM 10/TORCOF/modified CLAM
/COM10/TORCOF/K modifiers for MGSTEPS _ 0 and MGPLS g: 0

/COM15/INITIAL/general convergence criteria

/COM7/TORSION/direction cosines of b, in (i,j) plane

/COM20/TORSION/direction cosines of b , in (i,k) plane

/Iocal/SETUPJ,SETUPK/temporary straightness vector, d
/COM7/SETUPJ/straightness vector, Y, in (i,j) plane

/COM20/SETUPK/straightness vector, _'*, in (i,k) plane
/local/TORSION/torsion vector, t or t*

/COM7/SETUPJ/ _, normal tOj-I line, in k plane

/COM20/SETUPK/ t_*, normal toj line in k-1 plane

/COM10/input/ C_ and C,*, directions for torsion vectors

/COMI0/TORCOF/modified C_and C)*

/COM9/CROSSV/ DA' for s' calculation

/COM9/CROSSV/ DA" for s* calculation

/argnment/DETERM/ value of three-order determinant
/COM6/DLENG/ As computed for end-edge modification

37

DLENGS
DMINSDB
DSN
DS(IMX)
DSE
DSMAX
DSMIN
DSW
DSWI,DSW2
EXPORT

F(IMX)
FB(IMX)
FF(IMX)
FG(IMX)
FGASP
FGS(IMX)
FGW
FORMI
FORMO
FQ(IMX)
FQW
FSMACH
FV

GEOM

ICROSS
ID
IEND
IINVERSE
IJPLANE
IKPLANE
IM(NM)
IMAX
IMAXQ
IMPORT
IMQ(NM)
IMX
INDQ
INTER
IQ(NDIM+3)
IS,IE
IST
ISTEP

JD
JEND
JINVERSE
JKPLANE

JM(NM)
JMAX

JMAXQ

JMQ(NM)
JS,JE

/COM6/DLENG/Zks computed for start-edge modification
/Iocal/GETB/ 0 rain(As)lOB

/argument/input,PUSHlT/ parameter for outer boundary location
/COM3/FBAR,LINE1 ,SOLUT/ As

/COM18/input/outer edge spacing (when RECLUSTe 0)

/COM6/FBAR/ As,,,_.,. from RDSMAX

/COM6/FBAR/ As.,i. from RDSMIN

/COM 18/input/wall spacing for Vinokur algorithm
/COMl8/input/first and last wall spacing when DSW=999

/COM21/input/if true, store data for transferring between mu[tigrids

/COM2/FBAR/flow gradient, f = 3q/Os. at input s

/COM2/INTF/ j_, normalized fat current s

/Iocal/SOLUT/coefficient of RHS of solution matrix

/COMI7/FBAR/normalized Og/Os

/Iocal/MGWALLS/function of aspect ratio
/COMI 7/WALLS/ Og/Os at SMSS

/COM17/MGWALLS/coefficient of FG for ¢0 calculation

/COM24/input/true if ASCII (formatted) input files
/COM24/input/true if ASCII (formatted) output files
/COM17/FBAR/normalized Oq/_s

/COMI 7/MGWALLS/coefficient of FQ for co calculation

/COM12/input/ information only, for PLOT3D
/COM15/input/flag to indicate finite-volume q file

/COMI l/input/request for geometry function

/argument/CROSSV/index for interval location of s' or s*
/dimension/parameter statement/grid dimension in i direction
/COM4/input/last node along i in adaption domain
/COMI 3/INITIAL/adaption requested in backward i steps
/COMl4/input/true if(i,j)is adaption plane
/COM14/input/true if(i,k) is adaption plane
/COM21/input/IMAX for each grid in multigrid file
/COM4/input/number of points in physical domain, i direction
/COM24/input/IMAX for q file
/COM2 I/input/if true, describes location to place EXPORT data
/COM24/input/IMAX for each grid in the multigrid q file
/dimension/parameter statement/maximum value of ID,JD,KD
/COM5/inpull index for q for adaption variable

/COM11/input/order of interpolation, 2, 3, or 4
/COM5/input/related to INDQ, combines q adaption function
/COM23/input/i range of export�import transfer plane
/COM4/input/first node along i in adaption domain
/COM13/input/true for stepping in i direction within the plane

/dimension/parameter statement/grid dimension inj direction
/COM4/input/last node inj adaption domain
/COMI3/INITIAL/adaption requested in backwardj steps
/COMl4/input/true if (j',k) is adaption plane
/COM21/input/JMAX for each grid in multigrid file
/COM4/input/number of points in physical domain,j direction
/COM24/input/JMAX for q file
/COM24/input/JMAX for each grid in the multigrid q file
/COM23/input/j range of export�import transfer plane

38

JST
JSTEP

KD
KEND
KINVERSE
KM(NM)
KMAX
KMAXQ
KMQ(NM)
KS,KE
KST
KSTEP

LENDADD
LENDSUB
LNS1NG
LSTADD
LSTSUB
MARCH
MARCHPL
MAXITS
MG1
MG2
MGCT(NM)
MGPLS
MGRID
MGSTEPS
MPLANE
MSI,MSJ,MSK
MTCtt
MVBOUND
MXFG

NA
NADS
NDIM
NEDGE
NFILT
NFLAG
NGRID
NIPTS
NITGI
NITGO
NITQI
NITQO
NM
NOMORE
NOQ
NOSESM
NOUP
NSM,NSMI
OK
ORTHE(2)
ORTItS(2)

/COM4/input/first node inj adaption domain
/COMl3/input/true for stepping inj direction within the plane

/dimension/parameter statement/grid dilnension in k direction

/COM4/input/last node in k adaption domain
/COMI3/INITIAL/adaption requested in backward k steps

/COM21/input/KMAX for each grid in multigrid file
/COM4/input/number of points in physical domain, k direction
/COM24/input/KMAX for q file
/COM24/input/KMAX for each grid in the multigrid q file
/COM23/input/k range of export�import transfer plane
/COM4/input/first node in k adaption domain
/COM13/true for stepping in k direction within the plane

/COMl9/input/start of add points range
/COM19/input/start of delete points range
/COM15/input/flag to indicate a common line for each plane

/COM19/input/end of add points range
/COMl9/input/end of delete points range

/COMI4/input/true to interpolate up to physical boundary
/COMI4/input/true to interpolate to final plane
/COMI 5/INITIAL/maximum number of iterations for convergence

/COMg/INITIAL/number of merging points for NEDGE at i_,

/COM9/INITIAL/number of merging points for NEDGE at i<.,,d

/COMI6/INITIAL/counter on number of adaptions per grid
/COMI 1/input/number of planes before full adaption within plane
/COMl2/input/multiple grid number for adaption
/COM11/input/number of lines before full adaption within plane
/COM23/input/plane number for export or import plane
/COM21/SIZING/contains overall maximum size of multiple grids

/argument/INITIAL/flag to indicate export and import has occurred
/COM18/input/ invokes outer boundary movement
/COM17/MGWALLS/location of maximum 3g/Os

/dimension/parameter statement/maximum number of adaption passes
/COM4/MAIN/index on munber of adaptions
/dimension/parameter statement/ no. of q variables, normally set to 5
/COM9/input/initiates side-edge boundary override
/COMI 1/input/number of passes for smoothing data
/COMI5/INITIAL/ indicates direction sign for normal vectors
/COM2 I/input/number of grids in mu[tigrid file
/COM4/INITIAL/total nulnber of i points in computation domain
/COMI2/INITIAL,WRITOUT.../unit number for input grid file
/COMI2/INITIAL,WRITOUT.../unit number for output grid file
/COMI2/INITIAL,WRITOUT.../unit number for input q file
/COMI2/INITIAL,WRITOUT.../unit number for output q file

/dimension/parameter statement/maximum number of multigrids
/argument/INITIAL/no more input datasets remain; end program
/COMI I/input/false to indicate no q file will be input
/COM15/input/ points to smooth nose kink after moving boundary
/COM11/input/prevents adaption, i.e., no update
/argument/input,PUSHIT/outer boundary smoothing

/COM14/SOLUT/ flag to indicate normal termination
/COM16/input/ false removes orthogonality at outer boundaries
/COM16/input/ false removes orthogonality at initial boundaries

39

P1,P2,P3
PLSING
PRES(IMX)

Q(ID,JD,KD,NDIM)
QFUN
QP(IMX,IMX,NDIM)
RDSMAX
RDSM1N
RE
RECLUST
REMOVE
RSWAP
SAVE
SING
SMS(IMX)
SMSS(IMX)
SN(IMX)
SNM(IMX)
SNMK(IMX)
SP(IMX)
SPF(IMX)
SPPL(IMX)
SS(IMX)
SUB

TAU
TAUPL
TIME
TN(2)
TNM(2)
TRAT(IMX)
TWOD

WDE
WDES
WDS
WDSS
WEIGHT(IMX)
WT(IMX)
WTSUM

X(ID,JD,KD)
XJ(IMX,3,3)
XP(IMX,IMX)

Y(ID,JD,KD)
YJ(IMX,3,3)
YP(IMX,IMX)

Z(ID,JD,KD)
ZJ(IMX,3,3)
ZP(IMX,IMX)

/argument/LAGCOF! Coefficients of Lagrange polynomials
/COM15/input/flag tO define a singular plane

/Iocal/FBAR/computed pressure

/COMI/input,UPDATE/flow-field variables
/COM1 I/input/false to allow geometry function only
/COM23/STOREX/q data of stored plane for grid transfer

/COM5/input/relative value of &_......

/COM5/input/relative value of As,,,i"

/COM12/input/not used, PLOT3D variable
/COMl8/input/invokes Vinokur reclustering algorithm
/COM18/input/number of points to remove at outer boundary

/argument/INITIAL,OUTPUT/flag for swapping data

/COM14/input/flag to suppress output
/argument/NORMPT/flag to indicate nonexistent normal
/COM3/FBAR/midpoints of As

/COM17/WALLS/ si for geometry calculation

/COM3/FBAR/current s array alongj line
/COM3/UPDATE/converged s array along j-1 line
/COM3/FBAR/converged s array alongj line on k-I plane

/COM9/TORSION/ s', intersection of torsion vector and j line
/argument/CSPLlN/cubic spline coefficients

/COM9/TORSION/ s*, intersection of plane torsion vector andj line
/COM3/FBAR/initial value ofs alongj line
/COM19/inpnt/request to delete points

:: /i0caI/SOLUT/z, torsion parameter within plane

/local/SOLUT/_, torsion parameter between planes
/COM12/input/not used, PLOT3D variable

/COM10/INITtAL/ proportion of /_ to /_ for torsion vectors
/COMI 0/TORCOF/TN modified for boundaries

/Iocal/FBAR/computed temperature ratio
/COM13/input/indicates 2-D input files

/COM2/WTEDGE/weighting factor used when NEDGE set
/COM6/WTEDGE/retained WDE

/COM2/WTEDGE/as WDE, but at initial boundary
/COM6/WTEDGE/retained WDS

/COM2/LINE I,SOLUT/ co, tension parameter

/COM6/GETWT/ co,, correction to co

/Iocal/GETB,LINEI,WTEDGE/ y_ I/co

/COM!/input/input grid points, i direction
/COM8/BLOCK,INTXYZQ/X data stored in block
/COM22/STOREX/stored X of export transfer data

/COM1/input/ input grid points,j direction
/COM8/13LOCK,INTXYZQ/Y data stored in block
/COM22/STOREX/stored Y of export transfer data

/COM1/input/ input grid points, k direction
/COM8/BLOCK,INTXYZQ/Z data stored in block

/COM22/STOREX/stored Z of export transfer data

.z

4O

3. EXAMPLES

This section contains many examples to familiarize the user with the adaptive-grid process. Each
example includes plots of the initial grid and flow-field contours, the input-control-parameter file used to
adapt the grid, the resultant adapted grid, and a discussion on the choice of control parameters. 1,1 addition,
some cases show the improved flow solution obtained from the flow solver using the adapted grid as input.
The 2-D examples show the effect of within-plane parameters that are also fundamental to 3-D problems,

so 3-D users should also study these examples.

3.1 Two-Dimensional Examples

The first set of examples is for 2-D problems. Although the code adapts the data as if it were a
single plane in a 3-D environment, this is imperceptible to the user. When TWOD=.true. in the input
parameter file, SAGE will expect the data to be in the 2-D format of PLOT3D. The index of (1) on the
CLAM and CT parameters refers to within-plane variables. Index (2) is not needed for these 2-D cases. If
TWOD=.true. on the first pass, it will be assumed for subsequent passes in the same run.

Case 1. Flow in a Supersonic Inlet

Figure 13(a) shows the 101 x 79 initial grid (assigned to unit 7) for an inlet flow-field problem. Flow
is from left to right (defined as the i direction) and a shock emanates from the upper-wall coruer, reflecting
off the lower wall. In addition, an expansion fan originates from the downstream upper-wall corner and
interacts with the reflected shock. An interim computed solution (input on unit 8), generated by the flow

solver using this initial grid, is shown as density contours in Fig. 13(b).

'_,oNI ,_,._ . (b)

Figure 13. Flow in a supersonic inlet. (a) hfftial grid," (b) computed density contours.

The SAGE code is now run to create a new grid that is more adapted to this solution, i.e., the grid

points are redistributed with respect to a chosen flow-field variable and output to the file assigned to
unit 10. SAGE also interpolates the complete flow-field solution onto these new grid points and outputs this
file to unit II. The updated files will subsequently be input into the flow solver to produce more accurate
solutions. Several examples of grid adaption are given for this inlet problem to demonstrate the effect of

varying the control parameters. Each example uses the grid and solution files shown in Fig. 13 as input.

Example 1: Single pass, stepping in j direction. Until the user is familiar with the basic parameters,
the first attempt should be an input-control file with no parameters; i.e., all default values are used (with the

exception of TWOD=.true.):
Snamel twod=.t. $

On completion of the execution, the message to unit 6 states "ADAPTION I COMPLETE". The adapted
grid using the default input parameters is shown in Fig. 14(a). The grid has been more evenly spaced and
there is a slight clustering of points around the shock on the lower-wall boundary but the remaining grid
lines are not adequately adapted to the flow features. This implies that the torsion term (_hose magnitude
is controlled by CLAM(l)) is too large and is overriding the local tension term, preventing the tension
forces from pulling the points to the high-gradient regions. In addition, the minimum grid spacing is too
large. Based on this information, a new input-control file was chosen:

41

$namel twod =. t., rdsm in =. 25, clam (1) =. O0I, hedge = 1 $

Only three control parameters are input: the minimum allowable grid spacing, the magnitude of the torsion
term (an order of magnitude less than the default value), and a request for edge control (which is frequently
used). The remaining parameters retain their default values, signifying that the full grid will be adapted,

density is the adaption variable, and stepping is in thej direction.

(a) (b)

I

Figure 14. Adapted grids. (a) All default parameters; (b) adaption from bottom to top."
rdsmin=.25, clam(1)=.O01, nedge=l.

The result of this adaption is shown in Fig. 14(b). It can be seen that, since adaption began along the lower

surface (l'st=l is the default), the redistributed points cluster around the point of reflection on this line.
However, points do not become sufficiently clustered at the corner shock and at the start of the expansion
wave region on the upper surface. This is to be expected, since the adaption on the initial fine is a I-D
solution and will pick up features quite clearly. However, as stepping continues, ihe _features on subsequent

lines get "dampened" by the torsion (i.e., smoothness) control.

Example 2: Adaption with backward jsteps. This example maintains the same parameters as Ex. I,
except that the upper surface is chosen as the initial adaption line, i.e.,

Snamel twod=, t., rdsmin =. 25, clam(l) . 001, nedge= 1,jst = 79,jend= 1 $

Figure 14(c) shows the result of this adaption, in this case, the upper surface is more clearly adapted, and
the point of reflection on the lower surface is more spread out. Comparing these two examples indicates
quite clearly that the starting line has a strong effect on the resultant adapted grid, and for some
applications it should be chosen carefully. z ,

Figure 14 concluded. (c) Marching from top to bottom; (d) marching in i. from right to left.

Example 3: Adaption in i direction. This example shows the very different grid generated when the
adaption is performed by stepping in the i direction (istep=.true.). Based on the experience obtained from
the first two examples, adapting from right to left will produce a better grid since there are no gradients on
line ist=l to adapt to. Hence, the input control file was chosen to contain:

Snamel n_,od =. t., istep=.f, ist - l Ol, iemt = l,rdsmin -. 25, clam(l) -. 001, nedge= 1 $

42

Figure14(d)showsthe resultof this adaption.Not surprisingly,the reflectedshockregionon the lower
surfaceis not "captured"by this adaption,andthusthis grid is lesssuitablethan thoseshownabove.This
demonstratesthatthechoiceof steppingdirectionis importantin producingadesirablegrid.
Example4: Effect of changingcontrol parameters. Thisexampleis actuallya collectionof examples
that showthe effect of varyingthe control parametersclam(l), ct(1), rdsmax, and rdsmin. Figure 15(a)

shows an adapted grid using "baseline" values. These are the same as the default values in the code with the
exceptions of clam(l)=.001 and adaption proceeds from top to bottom (i.e., jst= 79, jend=l).

$namel twod =. true., clam(l) =. O01.jst = 79,jend = 1, hedge = 1 $

(a) Co)

(c) (d)

(e) (f)

Figure 15. Effect of control parameters. (_0 Baseline: clam(l) =. O01, ct(ld -. 5,rdsmax =2. O,rdsmin =. 5;

(b) clam(1)=.O1; (c) clam(1)=.O001; (d) ct(l)--1.O; (e) ct(1)=.O; 09 rdsmax--4.0,rdsnfin=.25.

Figures 15(b) through 15(f) are grids adapted by changing just one of the baseline parameters. Figure 15(b)
shows the result with clam(l)=.Ol, and it is immediately obvious why this code default value was not
chosen as the baseline value for these comparison cases: clam(l) is too large to allow any of the flow
features to be "captured" by the adaption. Figure 15(c) shows the case for clam(1)=.O001, and this smaller
value produces a grid with more points clustered around the shocks. Figures 15(d) and 15(e) show the effect

43

of the ct(1) parameter: ct(1)=l.O in Fig. 15(d), emphasizing straightness, and ct=.O in Fig. 15(e),
emphasizing orthogonality. The latter shows how the orthogonality term dampens the adaption for this
case: we are requesting orthogonality to the already parallel i lines. Fina[ly, the effect of changing the
minimum and maximum allowable grid spacing is shown in Fig. 15(f), where rdsmax=4.0 and rdsmin=.25
are used. This mesh size control is only a factor of two different from that in the baseline example (Fig.

15(a)), but significantly densities the spacing in the shock regions.

Example 5: Two-directional adaption. Two-directional adaption is created by adapting in one direction
(e.g., stepping in j) and then adapting in the other direction (i.e., i), using the first adapted grid as input.
The resultant grid will depend on the order of the stepping direction. Two passes (i.e., two sets of input
control parameters) were made to produce the adapted grid shown in Fig. 16(a). If both these passes are
made during the same execution nm (not to be recommended for a first attempt), then additional output
files will be created on units 12 and 13. Data will be output for both passes, unless the SAVE parameter is

set to false on the first set of control parameters. The control file for this example contains:

Snamel _,od=.t.,clam(1)=.OOl,rdsmax=4.0,rdsmin=.25,jst= 79,jend=l,nedge =1 $

Snamel istep=.t.,ist= l Ol, iend= l, clam(1)=.OO l,rdsmin=.25,nedge= l $

The first pass steps in thej direction and uses the same input control parameters as the adapted grid
shown in Fig. 15(f). The second pass steps in i, and uses the same parameters as Ex. 3. Note that any
parameters that remain unchanged for the two passes still need to be redefined in the control file, since the
code restores all default parameters at the conclusion of each pass (with the exception of _,od=.true.). The
control file that produces Fig. 16(b) contains the same parameters, but the adaption order is reversed. That
is, the first pass steps in the i direction and the second pass in the j direction. The difference between Figs.
16(a) and 16(b) is obvious and shows that the initial grid completely effects the adaption. Although this
example shows that both adaptive sequences do adapt the grid quite reasonably, it should be noted that it is
also possible that one order of adaption will produce a completely unacceptable result, while the reverse is
quite suitable.

Figure 16. Two-directional adaption. (a) Marching in j fallowed by marching in i;
(b) marching in i followed by marching in j.

Example 6: Flow solution using adapted grid. Figure 17 demonstrates the improved flow-field
solution obtained when the flow solver is renm using an adapted grid as input. The adapted grid shown in

Fig. 17(a) was obtained by choosing the 'best' parameters, based on the experience already described:

Snamel twod .true.,jst 79,jend = 1, rdsmax =4. O,rdsmin =. 25, clam(l) =. 0001, hedge = 1 $

This grid and the interpolated flow-field variables were input to the flow solver, producing the flow solution
(shown as density contours) seen in Fig. 17(b). The improvement in the resolution of the incident and
reflected shock is obvious when compared to the initial solution shown in Fig. 13(b).

44

)

\, _/ t

Figure 17. Solution using adapted grid as input. (a) 'Best' adaption, rdsmax=4.0,rdsmin=.25,
clam(l) =. 0001; (b) solution density contours, using 'best' adapted grid.

Case 2. Hypersonic Blunt-Body Flow

The second case contains two examples that demonstrate the effect of the CLAM and CT
parameters. Figures 18(a) and 18(b) show an initial grid (32×32) and corresponding density flow-field
contours for a hypersonic blunt body. The j direction marches out from the surface to the free-stream
boundary, and the i direction marches along the body starting at the lowest point. This is a simple one-
directional problem with the shock shape aligned with the grid. The outer-side boundary is curved (when
marching in the i direction) and the default values of clam=.O1 and ct=.5 will prevent the adapted grid lines
from "turning" sufficiently at this edge, giving either a false densing of points at the outer side boundary or,
possibly, a critical error message. In this situation, two remedies are available. CLAM can be decreased,
hence de-emphasizing the effect of torsion and thereby allowing the tension force to "pull" the nodes
toward the shock wave. Alternatively, the orthogonality restraint can be removed by setting ct=l.O. Figure
18(c) shows the result of setting clam-.O01 and retaining all other parameters at their default value.

(a)

Figure 18. Hypersonic bhmt body. (a) hTitial grid, (b) initial density contours;
(c) adapted grid. clam =. 001.

45

Theadaptedgridobtainedby settingct=l.O is very similar to that shown in Fig. 15(c). The following are

the two input-control files:

Snamel twod=.t.,istep-.t.,clam(1)=.O01$ and Snamel m, od=.t.,istep-.t.,ct(1)=l.O $

Both adapted grids show the required result, i.e., the clustering of grid points across the shock.

Case 3. Blunt-Body Shock Impingement Problem

The third case introduces the use of the IQ and ORTHE parameters. Figure 19(a) shows the input

grid of a cowl/lip shock interaction problem. The j direction marches from the body surface to the outer
free stream and the i direction marches from the lower point of the sphere. The flow-field contours of both
density (Fig. 19(b)) and Mach number (Fig. 19(c)) are given, since the adaption flow-field parameter is a
combination of the two. The blunt-body shocks, impinging shock, and shear layers represent a complex
flow that requires adaption in both directions to adequately capture all the flow features. Figure 19(d) shows
the adapted grid (output on unit 13) produced by the following two-pass control file:

Snamel twod =. t., istep =. t., ist- 91, iend= I, indq- O.iq (1) =2, iq(7) = 1, rdsmin -. 25,
ct=. 7,clam(I) =. O05,nedge=2 $

Snamel indq =0, iq(1) =2, iq(7) = 1,rdsmin =. 3, orthe =.f $

The first pass steps in the i direction, starting from the topmost boundary. The parameter indq=O
indicates that IQ will be input, and in this case two-thirds of the density function and one-third of the Mach
function wilt be combined to become the adaption variable. As explained in case 2, the curvature of the

outer boundary requires increasing CT. Setting hedge=2 requests that only the side-edge boundary at j=l be
treated. The second pass introduces the use of the ORTHE variable: stepping occurs from the sphere wall to
the outer curved boundary, where the default would turn the grid to be normal to this outer boundary.
ORTHE overrides this and allows the adaption to occur naturally.

• _ _. .

(a) (b) (c) (d)

Figure 19. Bhmt-body shock impingement problem. (a) hfitial grid," (b) initial density contours;
(c) initial Mach contours; (d) adapted grM.

Case 4. Hypersonic Inlet (Zonal Adaption)

Figures 20(a) and 20(b) show the initial grid and density contours for a hypersonic cowl/lip inlet
problem. This is a more complex case and requires dividing the adaption domain into two zones: the bhmt

body region and the rectangular inlet region. The upper wall is the j-1 line and the outgoing channel region
(on the right side of the diagram) is the i=l line.

46

(a) (b) (c)
Figure 20. Hypersonic inlet, zonal adaption. (a) Initial grid," (b) initial density contours; (c)adapted grid.

Five adaption passes are required to create the final adapted grid shown in Fig. 20(c). The input
control file consists of

$namel twod-.t.,rdsmin=l.O, rdsmax=l.O, save=.f $

Snamel jstep=.f,rdsmhl=.2,nedge=l, save=.f $

Snamel ist- 70,save=.f $

Snamel jst =32,jend= 1, iend= 71, rdsmin =. 25, clam(l) =. 02, hedge = 1, save =.f $

$namel iend=85,jst = 19,jend= 1, clam(l) =. 002, hedge = 1,mgsteps =5 $

The first pass, with equal maximum and minimum spacing, spreads out the i grid lines evenly; the original
grid points were more densely distributed in the curved section, leaving fewer grid lines in the inlet area.
This is a good example of using the program to improve an initial grid, with no flow-field adaption
involved. The second pass steps in the i direction and adapts easily throughout the entire grid. The third,
fourth, and fifth passes perform the adaption in the j direction. The very different flow features in the
blunt-body region (blunt-body shock) compared to the features in the inlet region (Mach stem and reflected
shocks) indicate dividing the adaption domain into these two zones; i <_ 70 and i>70. Only the blunt-body
section (i>70) is adapted in pass three, with all default-control parameters. The adaption in the inlet
domain starts atjst=32 in order to pick up the Mach stem along the lower wall. After stepping through the
triple-point region (the intersection of the cowl shock and the reflected normal shock), the redistributed
points do not spread out sufficiently, so the adaption is stopped at line 19 and a fifth pass is started at line
19 with a decreased value of CLAM. Since this pass starts internally, it is necessary to set MGSTEPS in
order to merge smoothly from the already adapted region. Note: save=.f has been used on the first four
passes to prevent excessive file generation.

Case 5. Subsonic Impinging Jet

This example is to show the use of the SUB parameterl The original grid, with 231x100 grid
points, and the corresponding Mach contours are shown in Figs. 21(a) and (b). It was demonstrated that
adapting the grid enabled the user to decrease the density of grid points, and thus speed up the flow solver.
Adapting the grid and reducing the number of points can be accomplished in the same execution run. The
first step is to ensure that the dimension parameters are increased to ID=231, JD=231, KD=I, and
IMX=23 I. (Note that SAGE will inform the user of the correct dimensions, if necessary.) To remove every
other point from both coordinate directions, the input-control file requires two passes for the adaption:

$namel twod =. t., sub = 1, rdsmax =4. O,rdsmin-. 1, clam(l) =. O05,jst = 100,jend = 1, hedge = 1, indq = 7 $
$namel sub=l, istep=.t.,noup=.t. $

Both passes use the SUB parameter, reducing the number of points to a 116 x 51 grid as shown in
Fig. 20(c). The example shows that the SUB (as with the ADD parameter) can be used in conjunction with
an adaption (as in the first pass) or simply as a method to reduce the number of points in the original grid
(as in the second pass). It should be noted that if the two passes had been in reverse order, the input value
ofjst would need to be modified by the user tojst=51. To reduce points in a subset of the adaption domain,
LSTSUB and LENDSUB should be used; however, in this example the default values of the entire adaption

domain are appropriate.

47

(a)

(b)

IltX_

\

_JJ

(c)

_+

._h

i iiU

Figure 21. Subsonic impingement jet. (a) Initial grid,"
(b) initial roach contours; (c) adapted grid, with reduced points.

Case 6. Axisymmetric Plume Flow

This concluding 2-D case is presented to indicate tile powerful effect of the adaptive grid process on
the final flow-field solution. Figure 22(a) shows the initial grid and the reflected computed solution (in
Mach contours) of an axisymmetric nozzle-plume flow described by Venkatapathy and Feiereisen (1989).
This initial solution has not developed sufficiently to capture the final flow features: the outer shear layer,

barrel shock, Mach stem, reflected shock, and the triple-point shear layer. Three iterations (through both
adaption and flow solver) were made to produce the final adapted grid and soh,tion shown in Fig. 22(b). The
definition of the flow features is greatly improved. Figure 22(c) shows the accuracy of the _final solution:
the lower picture is a shadowgraph of the actual experiment and is almost mirrored by the computed
solution.

48

(a)

,i

ii iii

(b)

(c)

Figure 22. Axisymmetric plume flow. (a) Initial grid am�flow solution (as Mach contours) showing

underdeveloped flow features," (b) final adapted grid and flow solution after several iterations;

(c) comparison of computed solution with experimental shadowgraph.

49

3.2 Three-Dimensional Examples

The adaption of 3-D grids is more complicated, not only because of the additional torsion control,
but because of the increased choice of stepping and marching directions. For 2-D adaption, four choices of

adaption are available: stepping in the i direction, the j direction, or both (in either order). Each of these
options will produce a different adapted grid. For 3-D adaption, it is also necessary to choose a plane-
stepping direction and, in theory, to consider up to three possible directional passes. In practice, it has been
shown that a one-directional pass will frequently provide a sufficiently adapted grid, and that a two-

directional pass is the maximum required. The following case shows the effect of single- and multi-
directional passes.

Case 7. Tandem Fuel Injectors in a Supersonic Combustor (Rockwell Model)

Figure 23 represents a two-slot, tandem fuel injector arranged behind a backward facing step in a

Computational domain " Supersonic flow

J'" "" i

_ckward

facing

Transverse Injectors

Figure 23. Staged transverse injectors in a supersonic
combustor, showing computational domain.

supersonic stream that models the
Rockwell supersonic combustor. The
fuel injection through the slot nozzle
creates a complicated three-
dimensional flow pattern. Since the
outflow is supersonic, fuel injection
normal to the main flow produces
strong shock waves and streamwise
separation in the vicinity of the slots.
In addition, the backward facing step
locally creates a subsonic flow ahead of
the slots. In this example, grid
adaption is limited to the region
downstream of the backward facing

step. The grid and initial solutions for
the fuel injection problem were
provided by J. Wang.

Example 1: One adaption pass showing 3-D effect. This example is used to demonstrate how a one-
directional adaption changes the grid-point distribution, not only on the chosen adaption plane, but also on
the two cross planes. The initial grid (80×31x61)given in Fig. 24(a) shows three selected planes from
Wang's initial grid, one in each of the coordinate directions, where i=40,j=l and k:30. For clarity, these
planes are separated (but with their original orientations) and shown in Fig. 24(b). Figure 24(c) presents the
corresponding Mach contours obtained from the solution on the initial grid by the flow-field code. The
adaption is performed by redistributing the points on the first j plane and then marching in j planes
(obtained by setting ikplane=.t.). Within eachj plane, stepping is in the i direction (since istep=.t.) and the
adaption is therefore performed along the k lines. The input parameter file used to create the adapted grids

shown in Fig. 24(d) is:

Snamel ikphme =. t., istep =. t., rdsmax =4. O,rdsmin =. 2, indq = 7, c!am(1) =. 0002, clam(2) =. 0005, nedge= 1 $

As requested, thej plane has clearly adapted to the Mach number gradients in the k direction, but so
has the i plane, since this was the stepping direction within planes. However, the curvature of the planes
tliemselves has not changed. The k plane shows a different effect: points have not moved within the plane,
but only up and down (again, the k direction), thus changing the curvature of the plane. This example
clearly shows that although the adaption is in only one direction, all planes are affected. It is thus quite
possible for one pass to adequately adapt the grid for re-input to the flow-field code.

Example 2: Two-directional pass. This combustor problem is one that benefits from a two-directional
pass. By looking at the constantj plane in Fig. 24(d), it can be seen that a second adaption to redistribute
the i direction would be appropriate: this can be effected by adapting the j planes, stepping in k lines. The

second set of adaption parameters are

Snamel ikphme =. t., kstep :. t., rdsmax= 4. O,rdsmin :.2, indq = 7, clam (1) =. 0002, clam (2) =. 0005, hedge = 1 $

50

j=l plane

\

plane

\
i:40 plane

(a) Oo)

(c) (d)

pl_ane

k=30 plane

Figure 24. Three planes from initial grid. (a) Actual location, i=40,j = l,k=30, (b) same planes, separated
for clarity," (c9 initial Mach contours; (d) single direction adaption.

Figure 25(a) shows the result of performing this adaption "on top" of the adaption already shown in
Fig. 24(d); points have now been redistributed in the i direction as well as the k direction. However, it should
be noted that the i direction can also be adapted by marching inj within constant k planes by using:

Snamel ijplane =. t.,jstep =. t., rdsmax =4. O,rdsmin =. 2, indq = 7, clam(l) =. 0002, clam(2) =. 0005, hedge = 1 $

This adapted grid is shown in Fig. 25(b) and shows a very similar redistribution on the j plane, even though
this is not the adaption plane.

(a) (b)

Figure 25. Two-directional a,klption, using grid shown in Fig. 24(d) as input. (a) Adapting ik phmes,
stepping in k lines," (b) ad_q_ting ij planes, stepping in j.

51

Example 3: Torsion parameter between planes, _,*. The 2-D examples show how the torsion
parameter (_) affects the adaption within a plane: it controls the magnitude of the torsion term and the

larger the value of _., the smoother the resulting grid, but with less grid redistribution. This effect is
demonstrated in Case 1 in the 2-D section. Unfortunately, the "base" value of _Lvaries for each problem:

the default value in the code is .01 but the user may have to change this value by as much as one, two, or

even more orders of magnitude. _,* is the analogous torsion parameter between planes, and acts in a similar
manner to _., but restricts the movement of points from plane to plane to maintain smoothness in the

cross-planes. If _.*= 0, there is no torsion control between planes, and planes will be adapted as independent

entities. (In fact, setting _,*=0 is one way of handling periodic planes.) In the code, _.* is defaulted to
.0001 and this example illustrates the effect of this parameter.

j=l

(a) _ k=l plane (b) (c)

Figure 26. Effect of varying _,*. (a) Initial grid showing j = 1 plane," (b) adaption with clam(2) =. 001,"
(c) adaption with clam(2)=.O001.

The same combustor-flow problem from Ex. 1 is used with different input control parameters. This

time, we are adapting k planes and comparing the effect of _.* on the crossing j planes. Figure 26(a) shows
the initial distribution of two k planes (the upper and lower surfaces)joined by the first j plane. For this

particular application, the first k plane would normally not be adapted, since the maintenance of its initial
spacing is a high priority. However, to illustrate the adaption procedure, in this example the first plane is

adapted. The input parameter file giving the result shown ill Fig. 26(b) increases the value of _.* to .001

$namel i/plane--, t.,jstep =. t., clam(l) =. O01, ciam(2) =_:001, rdsmax =4. O,rdsmin =. 2, nedge= 1 $

This input requests marching in k planes (since ijplane=.t.) and stepping in the j direct!on=within the k

plane. The only parameter with any control of the j plane is _,* (clam(2)) and the j plane shows some
redistribution of points, but insufficient to reflect the flow features. Compare this plane to that in Fig.
26(c), where the adaption was performed with the identical input parameters except for a decrease in _,* to
.0001, i.e., = : = _

$namel ijp[ane-, t.,jstep =. t., clam(l) =. O0I, clam (2) :. 0 O01, rd_'max--4_ O_dsmin =. 2, hedge = 1 $

The effect on the smoothing between planes is very evident and indicates the influence of the torsion

parameter between planes.

Case 8. NASP 3-D Nozzle Simulation

Example 1. Two-directional adaption. Figure 27 shows the geometry of a wind tunnel experimental
model for the National AeroSpace Plane (NASP) called the Single Expansion Ramp Nozzle (SERN). The
model is inserted into a hypersonic test section with cold air injected at supersonic speed through the

nozzle. Superimposed on the ramp section is an outline of the computational grid which is detailed in
Fig. 28(a). This 3-D flow-field grid (41 × 60 × 90) defines the nozzle and after-body region of the model
that is used in the computational experiments. Shown in the figure is the downstream outflow plane at
i=41, the lower grid at k=31 (part of which is the upper surface of the after-body ramp) and the -symmetry
plane at j:l. Additional patched grids are not shown, but there is a grid boundary tliat must be matched
from j=41 to j=60 along the k=31 plane with the grid that is stored in k=l to k=30, and also a matching

52

i=l plane. Adaptions were performed from plane i=2 to plane i=41, stepping in both j and k directions
within the plane, using the initial solution shown as Mach contours in Fig. 28(b). This complex case utilizes
many of the available input options, and the two-pass adaption parameters used to produce the adapted grid
in Fig. 28(c) were:

$namel jkplane =. t., kstep =. t., rdsmax =2. 5, rdsmin =. 25,kst =32, kend=83, indq = 7, nedge= 1,
clam(l) =. 1, clam(2) =. 01, mgsteps =4, mgpls =4, march =. t., ct(l) =. 75,save =.f $

Snamel jkplane =. t.,jstep =. t., rdsmax = 1.25, rdsmin =. 25, kst =35, indq = 7,nedge= 2, mgl = 8,

clam(1) =. 1, clam(2) =. 0 l, mgpls =4, ct(1) =. 75 $

The first set of parameters requests the
Computational grid adaption of each i plane (jkplane=.t.),

V stepping in the k direction (kstep=.t.)

within the plane. Math number (indq=7) is
the adaption parameter. Adaption begins
on line k=31 with the merging technique
invoked (mgsteps=4) within the plane.
This will retain the k=31 line to match the

existing lower boundary and ensure that
the adaption parameters are filtered for
the next four adaption lines. Both torsion
parameters and the directional parameter,
ct(l), are larger than their default values

Figure 27. SERN experimental model and the since a previous test run showed that too
much adaption (and thus loss of

computational space in the plume region. Smoothness) occurred using the default

values. Another parameter used in this example is MARCH. This is invoked from line kend=83: after this
line, the flow has no gradient features and is mostly numerical 'noise,' and MARCH simply presents a more
attractive grid. Since the adaption algorithm normalizes the weighting function, 'noise' can produce
unnecessary redistribution. Due to adjacent grids, it is not appropriate to adapt the i=l plane, thus a smooth
transition is required between the first plane and subsequent planes. This is controlled by mgpls=4: the
default start plane of ist=l was not adapted and the next three planes were more gradually adapted than
they would have been if MGPLS was not requested. Example 2 of this case gives a detailed account of this
plane-merging process. The SAVE parameter was set to .false. to prevent the output datasets from being
written. This should be done only when more than one adaption pass is made in the same computer run.

The second adaption set requests adaption of the same i planes, but stepping in the j direction
within planes. The first adaption point is k=35. This was chosen to retain the first few points in the
boundary layer. In addition, the parameters nedge=2 and mgl=8 are used to filter this boundary layer
spacing into the next eight grid points on the line. The value of nedge was changed from I to 2 for this
pass because there was no need to maintain any spacing at the outer edge, where no gradients are found:
these points are better used within the body of the grid. However, the adaption still left an unnecessary
number of points in this outer region, so a final pass was made:

Snamel jkplane =. t.,jstep =. t., no up =. t., sub = 1, lsts ub =82, add= 1, Istadd = 51, lendadd=55 $

Here, no adaption is performed (noup=.t.) and four lines are moved by using the SUB and ADD parameters.
The final adapted grid is given in Fig. 28(c). This was input to the flow solver, producing the final solution
shown in Fig. 28(d).

It should be noted that this problem is a multigrid problem and that adaption of grids with matching
planes can be facilitated by using the export and import capabilities described elsewhere.

53

Outflow plane

(a)

Symmetry
plane

wilh

ramp surface
(b)

(c) (d)

Figure 28. NASP nozzle plume flow. (a) Initial grid," (b) initial Mach contours;
(c) adapted grid," (d) final soh/tion using adapted grid.

Example 2: Merging from non-adapted planes to adapted planes. The nature of three-dimensional
problems frequently necessitates the maintenance of boundaries: either for multiple grids or to preserve
solid geometry walls and even for maintaining boundary]ayers. For the NASP nozzle case described here,
the plane at i=l must match another plane on the adjacent (not shown) grid. (Note that this plane may
have received data via the export/import process.) There is also a dense grid spacing around the nozzle exit
for defining the boundary layer region that should also be retained. The way to handle these two situations
is to not adapt the first plane, but to adapt the contiguous planes in a merging manner. This merging is
needed to create a smooth transition in the cross plane, not in the adaption plane itself (which is handled

by MGSTEPS).
Figure 29(a) shows the initial i=t (and thus the identical i=2 plane) for the 3-D grid shown in

Fig. 28, and Fig. 29(b) contains the corresponding pressure gradients for the i=2 plane. If the input
adaption parameter ist=2 is used, with no merging process invoked (i.e., the first plane is ignored) tile
resultant adapted i-2 plane is shown in Fig. 29(c). Although this grid is smooth and nicely adapted to the
flow, the cross plane, j, is not (compare Fig. 29(c) with Fig. 29(a)). In addition, points have been drastically
pulled away from the nozzle region. By invoking the MGPLS option, this cross-plane unevenness can be

dampened. The technique is analogous to that used by MGSTEPS: both 7.* and C, are modified to increase

the restraint of movement of points between planes. These values will return to their original input values

within a certain number of planes, as requested by MGPLS. The following is the input parameter file used to

create the adapted grid (i=2 plane) shown in Fig. 29(d):

Snamel jkplane =. t. ,jstep =. t., rdsmax = l. 25, rds'min =. 25, kst- 35, indq-6, nedge =2, mg I =8,

clam (1) -. 1,clam(2) .01, ct(1) :. 75, mgpls-4 $

54

ThedifferencebetweenFigs.29(c)and(d) isstriking:theboundarylayerspacingis now maintainedandthe
adaptionprocessis just beginning.Althoughmgpls-4 in this example, setting mgpls=l will also have
considerable effect. By setting MGPLS at all, a request is made to not adapt the first requested plane (in this

case, ist-1, by default) but to use the grid on that plane as a control for the subsequent planes. Thus,
mgpls=l, ist=l is not the same as setting ist=2.

(b)

(c) (d)

Figure 29. Merging planes using mgpls. (a) Initial grid at i=l (and i=2); (b) initial pressure con/ours;
(c) adapted grid at i-2 with ist =2; (d) adapted grid at i=2 with ist = 1 and mgpls =4.

Case 9. Aeroassist Flight Experiment (AFE) Vehicle

This example is the hypersonic, non-equilibrium flow around the forebody of the aeroassisted flight
experiment (AFE) vehicle. In Fig. 30(a) the initial grid configuration (35x23x49) is shown around the
body in the form ofj planes 2 and 22, and the outflow plane at i=35. The Mach contours seen in Fig. 30(b)
were computed by the flow-field solver of Palmer (1990) using the non-adapted grid. This grid was then
adapted with respect to the Mach contours, and the resulting grid is seen in Fig. 30(c). The redistribution of
points within the blunt-body shock region is clearly shown. Due to the smooth shape of the shock,
adaption was performed only in one direction: marching in j planes and stepping in the i direction within
planes. The input data set used to create the adapted grid in Fig. 30(c) was

Snamel Insing= 1, ikplane =. t., istep-, t., indq = 7,jst =2,jend=22, rdsmax =4. O,rdsmin ---.1,

kst=15, orthe=.f ,nedge= l ,clam(1) =. O01 $

This is the first example to use the LNSING parameter. It is set since all j planes emanate from a

single line at i=l. (This forebody singular line is used in grid mapping.) However, the dataset still contains
the grid points for line i=l as if it were a separate line in each plane, h_sing=l ensures that the first line in
the first plane is adapted, and that all i=l lines on subsequent planes are set identical to this adapted line.
The parameter orthe was set to .false., which removes the orthogonality constraint at the outflow line of
i=35. The default value of .true. would have created a false turning of the adaption at this location. This

adapted grid was then re-input to Pahner's flow-solver which showed a considerably sharper blunt-body
shock feature ([990).

55

i=35

/

/

j=_

(a) (b) (c)

Figure 30. Hypersonic forebody flow (AFE). (a) Initial grid around the forebody;
(b) initial Mach contours; (c) adapted grid.

3.3 Multiple-Grid Examples

Section 2.4.3 describes some of the complexities of multiple grids. The first case here reproduces

the stylized example shown in Fig. 11 to illustrate the transfer of planes from one grid to another. The
second case is a generic NASP configuration (Davies and Deiwert, 1993).

Case 10. A Simple 3-D Grid

Example 1: Single plane transfer. Figure 3i is a reproduction of Fig. I 1 from Section I. This example
shows a matching common plane that is stored separately in each grid, but contains identical data. We will
define the size of each grid as (i,j,k) of (40x15x30). if the grids had been separated as single grids, as
shown in Fig. 31(b), the only choice would be to start the adaption process at the common plane and to
march in opposite directions• This would provide identical adaption points for the common plane. For
some problems this could be quite acceptable, but marching in the same direction more often produces the

preferred result.

(a) directi°n'/_/M -_
• (b) adaption q

matching

zone iili _ I _

grid 1_ _ W_//direction '

grid 1

(c) k

. ¢
El L// ada;;;on

direction

Figure 3 l. Reproduction of figure 11.

To adapt multizoned grids as shown in Fig. 31(c), a feature is available to transfer data from one grid to
another. The adaption process in Fig. 31(c) is to:

56

(1) adapt grid I up to the common plane (/=15);
(2) transfer data from the last plane in grid 1 to the first plane in grid 2; and
(3) adapt grid 2, using the merging planes option (i.e., mgpls nonzero) for the first plane.

This sequence is described by the following input control list:

$namel mgrid= l, ikplane=.t. $
$namel export =. t., mgrid= 1, ikplane =. t., mplane = 15 $
$nantel intport =. t., mgrid=2, ikplane =. t., mplane = 1 $
$namel mgrid=2, mgpls =2, ikplane =. t. $

If only a subset of plane 15, grid 1 was to be transferred to grid 2 (as shown in Fig. 32), then the
range would be described by entering values for parameters is, ie, ks, ke (i.e., those relating to the ikplane) for
both grids by

$namel export =. t., mgrid= l, ikplane--, t., mplane =15, is =30 $
$namel import =. t., mgrid=2, ikplane =. t., mplane =1, ie = 10 $

In this case, points 30 < i < 40 and all k points from the 15th ikplane in grid 1 are transferred to points
1 _<i _<10 in the first plane of grid 2. (Note that only is=30 on the export list and ie=lO on the import list
are required since the other range values are the same as the default values.)

Note for 2-D files. The same concept holds for 2-D files but care
must be taken since only a line is being transferred. Because only one k

plane exists, ijplane=.t, and mplane=l. Only is, ie,js,je can be used and _ f J
one of these two sets must have equal first and last values. Finally, if
the export card is the first card in the adaption set, include twod=.t, i

Example 2: Multiple transfers. It is possible to handle more than
one transfer within the same run of the code. In the example shown in
Fig. 32, it is probable that the lighter shaded domain of plane 15,
grid l, matches to a third grid, not shown. For this example, the two
sets of transfers can be entered sequentially:

Snamel export =. t., mgrid= 1, ikplane =. t., mplane = 15, is =30 $ direction

Snamel import =. t., mgrid=2, ikplane =. t., mplane = 1, ie = 10 $
Snamel export=, t., mgrid= 1, ikplane =. t., mplane = 15, ie =30 $ Figure 32. Matching subsets.

Snamel intport=, t., mgrid=3,, ikplane =. t., mplane = 1 $

Case 11. Generic NASP Configuration

This case is the result of NASP Government Work Package #20, by Davies and Deiwert (1993). A
two-part multiple grid defines a generic NASP vehicle configuration: one grid (35×59x51) for the nose
region and one grid (also 35×59×51) encompassing the remainder of the body. Figure 33(a) shows the
vehicle surface and three cross planes (/k planes), and Fig. 33(b) shows the corresponding Mach contours
that were used as the adaption function. The i direction is through the vehicle centerline, j steps away from
the body and k marches around the body from the lower surface. Adaption begins at the nose and marches
plane by plane towards the end of the body, transferring data at the matching plane (grid 1. jkplane 35 to
grid 2, jkplane 1). The input control file used to produce the adapted grid shown in Fig. 33(c) is

Sham el mgrid = l,jkplane =. t., ist :2, kstep :. t., kst :51,kend = 1,jst = 15, indq = 7,nedge= 1,
rdvmin =. 1, rdsmax =3. O,clam (I) =. 001, ct(2) =. 8, orthe(1) =.f, orthe(2) =.f $

Sham el export =. t., mgrid= l,jkplane =. t., mplane =35 $
Sham el import =. t., mgrid=2,jkplane =. t., mplane = 1 $
Sham el mgrid=2,jkplane =. t., kstep =. t., kst =51, kend = 1, indq = 7, mgpls =4, nedge= 1,

rdsmin =. 1, rdsmax=3. O,clam (1) =. O01, ct(2) =. 8, orths(2) =.f, orthe (1) =.f, orthe (2) =.f $

Some of these adaption parameters need explaining: ist=2 is the starting plane since the nose at ist=l is a
plane collapsed to a single point; kst=51 and kend 1 produces the best adaption direction for kstep

(compared to the result using the defaults kst=l and kend=51); jst=15 preserves the boundary layer; and
ct(2)=.8 (more straightness for the between-planes torsion parameter) produces a smoother adaption when
looking at the other planar directions. The export and import processes are straightfo_vard. For the

57

adaptionof grid2, mgpls=4 and orths(2)=.f both contribute to maintaining continuity across the matching

plane.

(a)

Co)

(e)

Figure 33. Generic NASP vehicle configuration. (a) Initial grid, (b) initial Mach contours,"
(c) adapted grid.

3.4 Recluster and Boundary Movement Examples

Reclustering is an alternative to adaption. It was initially added to give the user a second option for

point redistribution after the outer boundary was moved. (The first option was to proportion the new grid
spacing to the old grid spacing.) However, the same reclustering algorithm proved to be a useful tool to
redistribute the grid points without any boundary movement. An example would be to convert a grid
developed for an inviscid calculation into one appropriate for viscous flows. The first example below
demonstrates the reclustering technique without boundary movement; further examples demonstrate

boundary movement options.

Case 12. Space Shuttle

A single grid around the Space Shuttle, shown in Fig. 34(a), is used for these examples. The i
direction runs from the nose to the tail, and the k direction is from the body surface to the outer boundary,
thus the mesh seen in Fig. 34 is an ikplane. This initial grid is equally spaced to more clearly demonstrate

the reclustering process. Note that SAGE can transform any grid into an equally spaced grid by using
rdsmax=l.O, rdsnlin=l.O, ctam(1)=.O, clam(2)=.O.

Example 1. Reclustering entire domain with no boundary movement. To create a grid with the
stretched spacing shown in Fig. 34b, the following input dataset was used:

$namel htsing = 1, ikplane =. t., istep-, t., reclust = 1, mvbound =O,noq =. t., dsw--. 000 I, $

The parameter lnsing is set because of the singular line at the nose, and mvbound 0 signifies no boundary
movement. No Q file is needed to recluster the grids, so noq is set to true (however, this implies that any

existing Q file will not be interpolated onto the new grid points). Setting reclust=l is the same as

: 58

reclust=kmax(ikplaneandistep determine which lines we are reclustering, in this case, lines of constant k),
hence all the points will be reclustered. The value ofdsw (.0001) specifies the actual size of the first spacing off

the wall, not a normalized value.

(a) (b) (c)

Figure 34. Space Shuttle grid. (a) Initial, equally spaced grid; (b) new grid, reclust= l ;

(c) new grid with reclust = l and dse= 1. O.

Figures 34(b) and 34(c) show the effect of the reclustering. Points are tightly spaced next to the vehicle
surface for both cases. In Fig. 34(b), the outer Vinokur parameter, dse, contains the default value of 5.0 (which
sets the outer spacing to five times the average spacing); however Fig. 34(c) was created by inputting dse=1.0,

which retains a more dense spacing at the outer boundary.

This grid is an example where the outer boundary is close to the vehicle surface at the nose and then
rapidly expands away from the vehicle surface downstream. In this situation, the absolute size of the first wall

spacing, Asi=j, at the nose may not be appropriate for Asi=i In addition, such tight spacing at the nose can

create difficult conditions for the Vinokur solver further along the body, producing an unsmooth grid. This is

clearly shown in Fig. 34(d) where the value of.00001 has been used for the wall spacing all along the body.

(d) (e)

Figure 34 concluded. (d) Constant wall spacing, dsw =. 00001; (e) expanding wall spacing, dsw=999,
ds'w l =. 00001, dsw 2 =. 0001.

To create the smoother grid seen in Fig. 34(e), the user can set dsw=999., and input two values for the

wall spacing, one at the nose (dswl =.00001) and a larger value at the tail (dsw2 =.0001), by using the input
control file:

$nam el lnsing = 1,ikplane =. t., istep =. t., reclust = I, mvbound O,noq =. t.,
dsw =. 999.,dsw I =. O0001,dsw2 =. 0001 $

If reclustering is required within a subset of the grid, as for example, within the boundary layer, the

input control file would be the same, except for reclust, which would now be set equal to the number of points
to recluster, Where reclust<kmax.

59

Example 2: Percentage boundary movement. To move the outer boundary by a percentage of its original
location, mvbound is set equal to the percentage required. Figure 35(a) shows the same original grid as Fig.

34(a). The input file

Snamel lnsing = 1. ikplane =. t., istep = t., reclust: O,mvbound=-20, noq =. t., $

produces the grid shown in Fig. 35(b): the negative sign on mvbound pulls in the outer boundary by 20%.

(a) (b) (c)

÷

!

Figure 35. Percentage move in outer boundary. (a) Original grid," (b) mvbound=-20;

(c) mvbound=-20, nsm=O.

If mvbound=20 had been used, then the boundary would have moved out by 20%. This example also

provides a glimpse into the smoothing parameter nsm, which has a default value of 10: the smoothing has
caused a blip (shown by the arrow) at the change of boundary length over the shuttle window. The case was
rerun, adding nsm=O to the same input file above, giving the result seen in Fig. 35(c). In both cases, recIust=O

provides a new grid distribution proportional to the original spacing. _

Example 3: Outer boundary movement parallel to shock. This example demonstrates moving the outer

boundary to match a shock. Figure 36(a) is the initial grid and the computed density contours are shown in Fig.

36(b). The following input dataset was used to produce the grid shown in Fig. 36(c):

$namel lnsing = 1. ikplane =. t., istep =. t., reclust = 1,dsw :. 001, mvbound 999, indq =1 $

When mvbound=999, the code is told to use the q variable of record (in this case indq=l, density) to establish
the new location of the outer boundary. The code will search from the outer edge Until a jump in density

gradient is found. In the example, the boundary is moved inwards, but it is possible for a boundary to move
outwards if the shock crosses through the outer edge. However, if the outward movement is not satisfactory, one

technique is to move the boundary out by mvbound=+% and then re-run with a mvbound=999. This will ensure
that the entire shock is captured downstream and points are not wasted in the nose region.

(a) (b) (c)

Figure 36. Outer boundar 3' movement. (a) Initial grid," (b) density contours;

(c) new grid, with outer boundary moved inwards and po#zts _'ecluslered.

60

Thereis anotheroptionto movetheboundaryto matchacontourline.If mvbound > 1000.0, then the

boundary will run parallel to a particular contour line whose value is mvbound-lO00.O. Choosing the variable

(i.e., indq) and the value of the variable needs care. For example, consider the following input:

Snamel Insing- 1,ikplane =. t., istep-, t., reclust = I, dsw =. O01, mvbound= 1400. O,indq =5 $

Note that the fifth Q variable in this example contains temperature. The temperature contours and the

resulting grid are shown in Figs. 36(d) and (e). The value of mvbound=1400.O requests the outer boundary to

run parallel and close to the 400 ° contour line. Care must be taken to ensure that the chosen value exists along
all lines to prevent an unacceptable result.

(d) (e)

Figure 36 concluded. (d) Temperature contours; (e) outer boundary line follows the T = 400" contour.

4. REFERENCES

Davies, C.B.; and Deiwert, G.S.: Generic Grid Adaption, NASP Contractor Report 1143, February 1993.

Davies, C.B.; and Venkatapathy, E.: Application of a Solution Adaptive Grid Scheme, SAGE, to Complex
Three-Dimensional Flows, AIAA Paper 9 I- 1594, June 1991.

Davies, C.B.; and Venkatapathy, E.: A Simplified Self-Adaptive Grid Method, SAGE, NASA TM-102198,
October 1989.

Davies, C.B.; and Venkatapathy, E.: The Multidimensional Self-Adaptive Grid Code, SAGEv2, NASA TM-
110350, April 1995.

Nakahashi, K.; and Deiwert, G.S.: A Self-Adaptive-Grid Method with Application to Airfoil Flows, AIAA
Paper 85- !525, July 1985.

Palmer, G.: Enhanced Thermochemical Nonequi[ibrium Computations of Flow Around the Aeroassist Flight
Experiment Vehicle, AIAA Paper 90-1702, 1990.

Venkatapathy, E.; and Feiereisen, W.J.: Computational Studies of Hard-Body and 3-D Effects in Plume Flows,

AIAA Paper 89-0129, 1989.

Vinokur, M.: On One-d[mensional Stretching Functions for Finite-Difference Calculations, Journal of

Computational Physics, Vol. 50, No. 2, May 1983.

Walatka, P.P.; Buning, P.G.; Pierce, L.; and Elson, P.A.: PLOT3D User's Manual, NASA TM-101067, March
1990.

61

5. SAGEv2B, THE BLANKING VERSION

This section describes the blanking version of SAGE. SAGEv2 was modified to take into account
the BLANK feature available in PLOT3D, and was renamed SAGEv2B. The current SAGEv3 described in

this document does not accept the input parameter BLANK described below. Users interested in this option
should contact the authors for SAGEv2B. When time permits and/or if there is sufficient demand, this
feature will be added to the latest version. However, the following description will remain valid.

5.1 Algorithm for Blanked Overset Grids

As mentioned in Section 1.10.1, an overset blanking grid system can produce complicated grid

structures. Grids in the same system can have different functions. For example, a fine, detailed grid may be
created around each physical object, along with a larger, less dense grid that overlays the entire domain. In
fact, several layers of nested grids may be appropriate. Nevertheless, as with any grid generation method,
grids are still created around the physical objects with no a priori knowledge of the solution. Since the
accuracy of the flow solution is dependent on the grid, the need for an adaptive grid scheme is still

important.
One obvious option is to ignore the blanking flag and adapt the grid using whatever data is available

in the blanked regions. However, in most cases these values are not relevant to the solution. Therefore, a
change in the algorithm and some careful coding is required.

The basic adaption equation is given by Eq. (7):

coiAsi - coi-lAsi-i + f(_i) + f(wi) = 0

where s is the streamwise length along the adaption line, co is the tension force between points on a line, "_

is the within-plane torsion force, and W is the between-plane torsion force. The "c torsion force is a
function of the torsion vector defined in Eq. (16), where the constants t, and C_ may change from line to

line but are constant along a line, and hence are defined as single variables. When blanked regions are
involved, there will be active points along aj line that may be blanked (i.e., inactive) on the j-1 line. For

the straightness vector _', data is also required from the j-2 line. A similar situation exists for the between-

plane torsion vector, ii*. A simple method was chosen to handle the computation of the torsion vectors

when blanked points are found. First, the values of (7, and t,, were made dependent on i. If the point (i.j,k)

exists, but (i.j-l,k) is blanked, then t,, = I and C,, = 0 will place all the torsion force onto the orthogonal

vector /_i acting on the j line. If the points (i,j,k) and (i,j-l,k) exist, but (i,j-2,k) is blanked, then the

straightness vector is amended to include the j-1 point only. The same changes are made to the

coefficients of the _ vector, depending on the existence of the (i,j,k-1) and (i,j,k-2) points.
Another significant difference is the number of points on a line. With the blanking feature invoked,

the number of i points along aj line can differ line by line, varying from the user's input domain. The user

specifies the maximum value of (ist, iend), (jst,jend), and (kst, kend) for the adaption domain; the code will
recompute the start and end points of the adaption line for each step, within the user's specified limits.
When blanking occurs in the middle of a line, the two segments must be adapted separately.

Special handling occurs at boundaries. For edge boundaries, continuity is maintained between
adaption and physical boundaries. A question occurs along a boundary created by a blanked region: is this
edge to be externally influenced or not? It is currently assumed that edge control will not occur at a blanked
boundary unless the blanked boundary point is closer to the outer domain edge than the value of the
corresponding MG value. For marching boundaries in blanked applications, the code determines the start
and end points along the last adapted line (eitherjend, k orj, kend, depending on MARCH or MARCHPL). If
a fine to be interpolated starts (and/or ends) within the range of the last line, then only the appropriate

points will be used from the last line. If there are more points along the interpolation line, only the
available range from the last line will be used: the remaining points will retain their initial locations.

The addition or subtraction of points has been handled very simply. On request, points will be added
or removed over the entire adaption domain, regardless of blanked regions. The value placed in the

blanking array will reflect the proper position of each point, indicating whether it is in the blanked region
or not.

62

The proportionality coefficient,_.,controls the magnitudeof the torsion parameter.When a
situationoccursthat drasticallyincreasesthe numberof points in a line, the value of _., although
appropriatefor theoveralladaption,maypermittoomuchmovementwhenintegratingthe blankedregion
intoanon-blankedregion.For this reason,_.is locallymagnifiedto preventexcessivepoint movement.

5.2 Execution of SAGEv2B

SAGEv2B is the only version of SAGE that recognizes the blanking option that is found in

PLOT3D grid files as an additional variable, called IBL. The changes to the adaption algorithm to handle
blanked areas are discussed above. (Note: If 1BL is defined in the PLOT3D input grid file, SAGEv3 can be

used but the blanking will be ignored and the output grid file will not contain IBL.)
Invoking the blanking option is extremely easy: the variable blank=.t, should be added to the input

parameter file. However, defining the adaption domain and the marching directions requires much more
care. With the blanking feature invoked, the number of i points along aj line can differ line by line, varying
from the user's input domain. The user must specify the maximum value of (ist, iend), (jst.jend), and
(kst, kend) for the adaption domain; the code will re-compute the start and end points of the adaption line
for each step, within the user's specified limits. If the blanked region is in the middle of the grid, then
another strategy must be developed. One option is to divide the adaption domain into two. Unfortunately
this fixes one of the lines or creates a discontinuous grid. Performing two adaptions, sweeping in opposite
directions, will provide a better result. The examples section will clarify this.

5.2.1 User Input Parameter

There is only one new input parameter:

BLANK (FALSE) set to .true. to read PLOT3D IBL variable

BLANK The grid file in PLOT3D has an additional optional variable. Following the X,Y,Z arrays
is an array called IBL. IBL is the same dimension as the grid and contains an integer value that describes the
status of the grid point. The standard nomenclature of IBL=l implies the grid point is active, and IBL=0
signifies an inactive point. Some users may put other values in IBL, for example IBL=2 to represent a
border point. This code assumes that if IBL=0, the point is not considered; otherwise, it is assumed to be
part of the grid and will be counted as an active point on a line. The input values of IST, IEND, etc., that
describe the active adaption domain must contain the maximum required domain; the code will determine
the active domain for each line based on the values of 1BL and these maxima.

5.3 Subroutines and Variables

Several previously defined subroutines are amended. For example, all the 1/O routines are changed to
handle the IBL variable (including reading, writing, swapping etc.) Also, variables such as NIPTS, MG 1, etc.,
that were constants but now vary are renamed so they can be retrieved, and variables that become arrays
(such at CT) are defined. Because of its expanded size, the routine INITIAL is split into two: INITIAL and
GETDA TA. In addition, three new subroutines were created.

B L TST(IB, JB, KB, BLANKIT)

This routine tests to see if any points are blanked around an existing point (ib.jb, kb), for example, a
'hanging' point. If so, this point is also treated as blanked since there is no connectivity for adaption. The
variable BLANKIT is therefore set to true.

LNPTS(J,K)
This routine computes the number of active points on a line for adaption. Blanked points are not used.

Also the edge merge parameters (MG1 and MG2) are amended if blanking occurs within the line edge.

TORBL(ff, K)

This routine amends the torsion coefficients C r and t, for (i,j,k) to reflect the status of adjacent points. If

the point at (i,j-l,k) is blanked, then within-line coefficients are changed to C,, = 0 and t_, = 1. If (i,j,k-1)

is blanked, then the within-plane coefficients are changed to C*_,= 0 and t,,,*= I.

63

Newvariablesare:

A1J
BLANK
BLANKIT
IB,JB,KB
IBL
ISTF,IENDF
MG1F,MG2F
NIPTSJ1

/COM25/TORCOF/used to amend _. near blanked points

/COM25/input/invokes blanking option

/argument/BLTST/sends flag to LNPTS indicating status of current point

/arguments/BLTST/location of current point from LNPTS to BLTST

/COM25/input/array containing blank flags on input grid file

/COM25/GETDATA/saved input values of IST and IEND

/COM25/GETDATA/saved input values of MG! and MG2

/COM25/LNPTS/saved value of NIPTS on j-1 line

5.4 Example Case: Access-to-Space

The blanking version of the SAGE code was developed to assist the Access-to-Space project,

particularly the plume and base-flow computations. This example case consists of a multiple grid with a
total of five overlaid grids enveloping the base and plume flow regions. Grid number three overlays the
entire domain and contains many of the features that the new blanking version of the SAGE code must
accommodate. It was therefore chosen as the test case of the adaption process. Figure 37 shows the

constant j=2 plane and two constant i planes, i=48 and i=20, from grid #3 that is dimensioned
(48 × 31 × 61). The arrows in the figure indicate the coordinate directions.

k

Figure 37. Grid 3 domain.

Adapt ion of a single j plane.

To examine the methodology of adapting around blanked regions, we first look at a single plane.
Figures 38(a) and 38(b) show the initial grid and the interim Mach contours calculated on the constant j=2

plane seen in Fig: 37.

(a) _ i (b)

Figto'e 38. Phme j=2. (a) Initial grid; (b) initial Mach contours.

64

Sincethiswasaninterimsolution,manyof theflow featuresarenot clearlydeveloped.In addition,
only 'noise' can be seen at the onset of the flow (i planes 1 through 16). As a result, the first adaption
procedure was initiated at i=16. This example is complex because it contains a blanked region at a
boundary, an inner blanked region, merging from two blanking areas to a full grid, and even some 'hanging'

points/lines (points that are only singly attached to the grid) that can be seen halfway along the blanked
boundaries.

The plane was adapted using the following user-parameter input file:

$namel mgrid=3, blank=, t., ikplane =. t., istep =. t., jst =2,jend=2, ist = 16, indq = 7,
rdsmax--2. 5, rdsmin =. 4, clam (1) =. 05, hedge = 1, mgsteps = 4 $

The mgrid=3 parameter informs the SAGE code that the grid and solution files are in multiple grid format
and that these adaption parameters apply to the third grid. The parameter blank=.true, ensures that the
code reads the blank (IBL) array and tests for any blanked regions during the adaption of each line. The
ikplane and istep parameters define the line-stepping and plane-stepping directions. The adaption domain is
the j=2 plane, i points range from 16 to 48, and all the k points are included (if the domain range is not
input, physical boundaries are used as default), bldq=7 indicates that Mach number is the adaption variable;
rdsmax and rdsmin define the relative maximum and minimum mesh spacing; clam(I)=.05 increases the
spring force, co, to produce a smoother adaption; nedge=l invokes the edge spacing control and mgsteps=4

invokes the merging algorithm at i=16 to moderate the discontinuity between the adapted and non-adapted
region. All of these parameters are described in detail earlier in this user guide.

LLi 1
Figure 39. Adaption from left to right, starting at i=16.

This was a single-sweep adaption and the resulting grid is shown in Fig. 39. It can be seen that the
upper left side of the grid has not been adapted. This is because the adaption algorithm can only handle one
segment of a line, and since the line point count began at k=l, only the segment between the two holes was
captured. In order to capture the upper segment, a second sweep is required, this time defining the adaption
domain with kst-61, thus ensuring the line point-count algorithm starts looking for active points at k=61.
The following two-sweep input parameter file produced the result shown in Fig. 40.

Snamel mgrid=3, blank-.t., ikplane-.t.,istep=.t., indq=7,jst=2,jend=2, ist=16,kst-61,
kend = 1, rdsmax =2.5,rdsmin-. 4, clam(l) =. 05, hedge = 1, mgsteps =4 $

Snamel mgrid=3, blank=.t., ikplane=.t.,istep=.t., indq=7.jst=2,jend=2, ist=16,
rdsmax--2.5,rdsmin=.4, clam(I)=.05, hedge=l, mgsteps=4 $

This adaption provides a quite satisfactory result: all points have been adapted to align with the flow
features and no distortion of the blanked areas has occurred.

Figure 40. Two-sweep adaption.

65

Adaption of all planes.

Finally, Fig. 41 shows the complete adaption for all j planes. The input data set is almost
unchanged: the single-plane restriction on j has been removed and a value for the torsion between planes

has been input, giving

$namel mgrid=3, blank=.t., ikplane=.t.,istep=.t., indq= 7,ist =16, kst=61, kend= l,
rdsmax=2.5,rdsmin=.4, clam(I)=.05, clam(2)=.05 hedge=l, mgsteps=4, $

Sham e mgrid=3, blank =. t., ikplane =. t., istep =. t., indq - 7, ist = 16, rdsmax=2.5, rdsmin =. 4
clam(I)=.05, clam(2)=.05, hedge=l, mgsteps=4, $

The figure shows the i=20 and i=48 planes and the j=2 and jend planes. All the flow features have been

captured by the adaption.

Figure 41. Full adaption of computational grid.

66

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of informalionis estimated to average 1 hour per response, includingthe time for reviewing Instructions, searching existingdata sources,
gathering and maintaining the data needed, and completing and reviewing the collectionof information. Send comments regarding thisburden estimateor anyother aspect of this
coltectlonof information, includingsuggestions for reducing this burden, to WashingtonHeadquarters Services. Directorate for informationOperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Managementand Budget, Paperwork Reduction Project (0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1999
4. TITLE AND SUBTITLE

The Self-Adaptive Grid codE, SAGE
Version 3

6. AUTHOR(S)

Carol B. Davies* and Ethiraj Venkatapathy ÷

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

242-33-0 !
I

8. PERFORMING ORGANIZATION
REPORT NUMBER

• A-99V0034

110. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM-1999-208792
|

11. SUPPLEMENTARY NOTES

Point of Contact: Carol B. Davies, Ames Research Center, MS 230-2, Moffett Field, CA 94035-1000

(650) 604-6204

*Ra_'theon ITSS, Moffett Field, CA. tThermoscience Institute, Eioret, Sunn_,vale, CA.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -- Unlimited

Subject Category 61

Availability: NASA CASI (301) 621-0390

Distribution: Standard

13. ABSTRACT (Maximum 200 words)

The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational

fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while

simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid

by redistributing the mesh points into more appropriate locations. The movement of these points is driven by

an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive

solution errors. The method also provides a balance between clustering points in the high gradient regions

and maintaining the smoothness and continuity of the adapted grid. The latest version, Version 3, includes

the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides

alternative redistribution algorithms.

14. SUBJECT TERMS

Adaptive grids, Aerodynamics, CFD

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN -7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

73
16. PRICE CODE

A04
20. LIMITATION OF ABSTRAC'I'

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18

